Skip to main content

Dielectric Constant of Polymer Composites and the Routes to High-k or Low-k Nanocomposite Materials

  • Chapter
  • First Online:

Abstract

The continuous miniaturization and increased functionality of modern electronic devices highly demand the development of high-performance dielectric materials. High-k or low-k polymer nanocomposites are receiving a fast-growing interest due to their large tunability of dielectric constant and easy processing. The dielectric properties are usually tuned by properly selecting the identity, shape, property of fillers, and engineering the interfaces between fillers and matrix. In this chapter, we review the recent progress in the fundamentals, processes, and properties of dielectric polymer composites. Particular attention is paid on the current routes toward high-k or low-k nanocomposite materials. Some long-standing problems and topics that warrant further investigations in the near future are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nalwa H (1999) Handbook of Low and High Dielectric Constant Materials and Their Applications. Academic, London

    Google Scholar 

  2. Huang X, Jiang P (2015) Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv Mater 27(3):546–554

    Article  CAS  Google Scholar 

  3. Rao Y, Wong CP (2004) Material characterization of a high-dielectric-constant polymer-ceramic composite for embedded capacitor for RF applications. J Appl Polym Sci 92(4):2228–2231

    Article  CAS  Google Scholar 

  4. Dang ZM, Yuan JK, Yao SH et al (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25(44):6334–6365

    Article  CAS  Google Scholar 

  5. Neese B, Chu B, Lu SG, Wang Y, Furman E, Zhang QM (2008) Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321(5890):821–823

    Article  CAS  Google Scholar 

  6. Zhang G, Li Q, Gu H, Jiang S, Han K, Gadinski MR et al (2015) Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Adv Mater 27(8):1450–1454

    Article  CAS  Google Scholar 

  7. Zhang QM, Li HF, Poh M, Xia F, Cheng ZY, Xu HS et al (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419(6904):284–287

    Article  CAS  Google Scholar 

  8. Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Comm 31(1):10–36

    Article  CAS  Google Scholar 

  9. Maier G (2001) Low dielectric constant polymers for microelectronics. Prog Polym Sci 26(1):3–65

    Article  CAS  Google Scholar 

  10. Ihlefeld J, Laughlin B, Hunt-Lowery A, Borland W, Kingon A, Maria JP (2005) Copper compatible barium titanate thin films for embedded passives. J Electroceram 14(2):95–102

    Article  CAS  Google Scholar 

  11. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H et al (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4):1697–1733

    Article  CAS  Google Scholar 

  12. Yao SH, Yuan JK, Gonon P, Bai J, Pairis S, Sylvestre A (2012) Effect of oxygen vacancy on the dielectric relaxation of BaTiO3 thin films in a quenched state. J Appl Phys 111(10):104109

    Article  Google Scholar 

  13. Wu JB, Nan CW, Lin YH, Deng Y (2002) Giant dielectric permittivity observed in Li and Ti doped NiO. Phys Rev Lett 89:217601

    Article  Google Scholar 

  14. Li JY, Zhang L, Ducharme S (2007) Electric energy density of dielectric nanocomposites. Appl Phys Lett 90:132901

    Article  Google Scholar 

  15. Dang Z-M, Yuan J-K, Zha J-W, Zhou T, Li S-T, Hu G-H (2012) Fundamentals, processes and applications of high-permittivity polymer matrix composites. Prog Mater Sci 57(4):660–723

    Article  CAS  Google Scholar 

  16. Wang Y, Zhou X, Chen Q, Chu B, Zhang Q (2010) Recent development of high energy density polymers for dielectric capacitors. IEEE Trans Dielectr Electr Insul 17(4):1036–1042

    Article  CAS  Google Scholar 

  17. Job AE, Alves N, Zanin M, Ueki MM (2003) Increasing the dielectric breakdown strength of poly(ethylene terephthalate) films using a coated polyaniline layer. J Phys D-Appl Phys 36(12):1414–1417

    Article  CAS  Google Scholar 

  18. Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q et al (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313(5785):334–336

    Article  CAS  Google Scholar 

  19. Tuncer E, Sauers I, Randy James D, Ellis AR, Parans Paranthaman M, Goyal A et al (2007) Enhancement of dielectric strength in nanocomposites. Nanotechnology 18:325704

    Article  Google Scholar 

  20. Rahimabady M, Chen S, Yao K, Tay FEH, Lu L (2011) High electric breakdown strength and energy density in vinylidene fluoride oligomer/poly(vinylidene fluoride) blend thin films. Appl Phys Lett 99:142901

    Article  Google Scholar 

  21. Wu S, Li W, Lin M, Burlingame Q, Chen Q, Payzant A et al (2013) Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density. Adv Mater 25(12):1734–1738

    Article  CAS  Google Scholar 

  22. Islam MS, Qiao Y, Tang C, Ploehn HJ (2015) Terthiophene-containing copolymers and homopolymer blends as high-performance dielectric materials. ACS Appl Mater Interfaces 7(3):1967–1977

    Article  CAS  Google Scholar 

  23. Tan L, Liu S, Zeng F, Zhang S, Zhao J, Yu Y (2011) A low dielectric constant polyimide/polyoxometalate composite. Polym Adv Technol 22(2):209–214

    Article  CAS  Google Scholar 

  24. Fredin LA, Li Z, Lanagan MT, Ratner MA, Marks TJ (2013) Sustainable high capacitance at high frequencies: metallic aluminum – polypropylene nanocomposites. ACS Nano 7(1):396–407

    Article  CAS  Google Scholar 

  25. Zhu L (2014) Exploring strategies for high dielectric constant and low loss polymer dielectrics. J Phys Chem Lett 5(21):3677–3687

    Article  CAS  Google Scholar 

  26. Kim SH, Hong K, Xie W, Lee KH, Zhang S, Lodge TP et al (2013) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25(13):1822–1846

    Article  CAS  Google Scholar 

  27. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, New York

    Book  Google Scholar 

  28. Tamura R, Lim E, Manaka T, Iwamoto M (2006) Analysis of pentacene field effect transistor as a Maxwell-Wagner effect element. J Appl Phys 100(11):114515

    Article  Google Scholar 

  29. Ducharme S (2009) An inside-out approach to storing electrostatic energy. ACS Nano 3(9):2447–2450

    Article  CAS  Google Scholar 

  30. Li JY, Huang C, Zhang QM (2004) Enhanced electromechanical properties in all-polymer percolative composites. Appl Phys Lett 84:3124

    Article  CAS  Google Scholar 

  31. Cheng Y, Chen X, Wu K, Wu S, Chen Y, Meng Y (2008) Modeling and simulation for effective permittivity of two-phase disordered composites. J Appl Phys 103:034111

    Article  Google Scholar 

  32. Chu B, Zhou X, Neese B, Zhang QM, Bauer F (2006) Relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer for high energy density storage capacitors. IEEE Trans Dielectrics Electrical Insulation 13(5):1162–1169

    CAS  Google Scholar 

  33. Qiao Y, Islam MS, Han K, Leonhardt E, Zhang J, Wang Q et al (2013) Polymers containing highly polarizable conjugated side chains as high-performance all-organic nanodielectric materials. Adv Funct Mater 23(45):5638–5646

    Article  CAS  Google Scholar 

  34. Burlingame Q, Wu S, Lin M, Zhang QM (2013) Conduction mechanisms and structure-property relationships in high energy density aromatic polythiourea dielectric films. Adv Energy Mater 3(8):1051–1505

    Article  CAS  Google Scholar 

  35. Thakur VK, Lin M-F, Tan EJ, Lee PS (2012) Green aqueous modification of fluoropolymers for energy storage applications. J Mater Chem 22(13):5951–5959

    Article  CAS  Google Scholar 

  36. Dang ZM, Xu HP, Wang HY (2007) Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly(vinylidene fluoride) nanocomposite. Appl Phys Lett 90(1):012901

    Article  Google Scholar 

  37. Arbatti M, Shan XB, Cheng ZY (2007) Ceramic-polymer composites with high dielectric constant. Adv Mater 19(10):1369–1372

    Article  CAS  Google Scholar 

  38. Balasubramanian B, Kraemer KL, Reding NA, Skomski R, Ducharme S, Sellmyer DJ (2010) Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties. ACS Nano 4(4):1893–1900

    Article  CAS  Google Scholar 

  39. Dang Z-M, Xia Y-J, Zha J-W, Yuan J-K, Bai J (2011) Preparation and dielectric properties of surface modified TiO2/silicone rubber nanocomposites. Mater Lett 65(23-24):3430–3432

    Article  CAS  Google Scholar 

  40. Zou C, Kushner D, Zhang S (2011) Wide temperature polyimide/ZrO2 nanodielectric capacitor film with excellent electrical performance. Appl Phys Lett 98(8):082905

    Article  Google Scholar 

  41. Tuncer E, Sauers I, James DR, Ellis AR, Duckworth RC (2008) Nanodielectric system for cryogenic applications: barium titanate filled polyvinyl alcohol. IEEE Trans Dielectr Electr Insul 15(1):236–242

    Article  CAS  Google Scholar 

  42. Dang Z-M, Zhou T, Yao S-H, Yuan J-K, Zha J-W, Song H-T et al (2009) Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater 21(20):2077–2082

    Article  CAS  Google Scholar 

  43. Yang W, Yu S, Sun R, Du R (2011) Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites. Acta Mater 59(14):5593–5602

    Article  CAS  Google Scholar 

  44. Prakash BS, Varma KBR (2007) Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites. Compos Sci Technol 67(11-12):2363–2368

    Article  CAS  Google Scholar 

  45. Amaral F, Rubinger CPL, Henry F, Costa LC, Valente MA, Barros-Timmons A (2008) Dielectric properties of polystyrene-CCTO composite. J Non-Cryst Solids 354(47-51):5321–5322

    Article  CAS  Google Scholar 

  46. An AL, Boggs SA, Calame J, IEEE (2006) Energy storage in polymer films with high dielectric constant fillers. Conference Record of the IEEE International Symposium on Electrical Insulation, Toronto, Ont

    Google Scholar 

  47. Calame JP (2006) Finite difference simulations of permittivity and electric field statistics in ceramic-polymer composites for capacitor applications. J Appl Phys 99(8):084108

    Article  Google Scholar 

  48. Song Y, Shen Y, Liu H, Lin Y, Li M, Nan C-W (2012) Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites. J Mater Chem 22(16):8063–8068

    Article  CAS  Google Scholar 

  49. Song Y, Shen Y, Liu H, Lin Y, Li M, Nan C-W (2012) Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J Mater Chem 22(32):16491–16498

    Article  CAS  Google Scholar 

  50. Avila HA, Ramajo LA, Goes MS, Reboredo MM, Castro MS, Parra R (2013) Dielectric behavior of epoxy/BaTiO3 composites using nanostructured ceramic fibers obtained by electrospinning. ACS Appl Mater Interfaces 5(3):505–510

    Article  CAS  Google Scholar 

  51. Tang H, Lin Y, Andrews C, Sodano HA (2011) Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology 22(1):015702

    Article  Google Scholar 

  52. Liu S, Xue S, Zhang W, Zhai J, Chen G (2014) Significantly enhanced dielectric property in PVDF nanocomposites flexible films through a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanotubes. J Mater Chem A 2(42):18040–18046

    Article  CAS  Google Scholar 

  53. Dang Z-M, Wang H-Y, Xu H-P (2006) Influence of silane coupling agent on morphology and dielectric property in BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett 89(11):112902

    Article  Google Scholar 

  54. Ramesh S, Shutzberg BA, Huang C, Gao J, Giannelis EP (2003) Dielectric nanocomposites for integral thin film capacitors: Materials design, fabrication, and integration issues. IEEE Trans Adv Pack 26(1):17–24

    Article  CAS  Google Scholar 

  55. Li J, Khanchaitit P, Han K, Wang Q (2010) New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem Mater 22(18):5350–5357

    Article  CAS  Google Scholar 

  56. Xie L, Huang X, Wu C, Jiang P (2011) Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J Mater Chem 21(16):5897–5906

    Article  CAS  Google Scholar 

  57. Paniagua SA, Kim Y, Henry K, Kumar R, Perry JW, Marder SR (2014) Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Appl Mater Interfaces 6(5):3477–3482

    Article  CAS  Google Scholar 

  58. Jung HM, Kang J-H, Yang SY, Won JC, Kim YS (2010) Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites. Chem Mater 22(2):450–456

    Article  CAS  Google Scholar 

  59. Tchoul MN, Fillery SP, Koerner H, Drummy LF, Oyerokun FT, Mirau PA et al (2010) Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chem Mater 22(5):1749–1759

    Article  CAS  Google Scholar 

  60. Guo N, DiBenedetto SA, Kwon D-K, Wang L, Russell MT, Lanagan MT et al (2007) Supported metallocene catalysis for in situ synthesis of high energy density metal oxide nanocomposites. J Am Chem Soc 129(4):766–767

    Article  CAS  Google Scholar 

  61. Li Z, Fredin LA, Tewari P, DiBenedetto SA, Lanagan MT, Ratner MA (2010) In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites. Chem Mater 22(18):5154–5164

    Article  CAS  Google Scholar 

  62. Yuan J-K, Yao S-H, Dang Z-M, Sylvestre A, Genestoux M, Bai J (2011) Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbon nanotubes in polyvinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C 115(13):5515–5521

    Article  CAS  Google Scholar 

  63. Nan CW, Shen Y, Ma J (2010) Physical properties of composites near percolation. Annu Rev Mater Res 40:131–151

    Article  CAS  Google Scholar 

  64. Dang ZM, Lin YH, Nan CW (2003) Novel ferroelectric polymer composites with high dielectric constants. Adv Mater 15(19):1625–1629

    Article  CAS  Google Scholar 

  65. Sun LL, Li B, Zhao Y, Mitchell G, Zhong WH (2010) Structure-induced high dielectric constant and low loss of CNF/PVDF composites with heterogeneous CNF distribution. Nanotechnology 21:305702

    Article  CAS  Google Scholar 

  66. Yuan J-K, Yao S-H, Sylvestre A, Bai J (2012) Biphasic polymer blends containing carbon nanotubes: heterogeneous nanotube distribution and its influence on the dielectric properties. J Phys Chem C 116(2):2051–2058

    Article  CAS  Google Scholar 

  67. Fan P, Wang L, Yang J, Chen F, Zhong M (2012) Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology 23:365702

    Article  Google Scholar 

  68. Yu J, Huang X, Wu C, Jiang P (2011) Permittivity, thermal conductivity and thermal stability of poly(vinylidene fluoride)/graphene nanocomposites. IEEE Trans Dielectr Electr Insul 18(2):478–484

    Article  CAS  Google Scholar 

  69. He F, Lau S, Chan HL, Fan JT (2009) High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv Mater 21(6):710–715

    Article  CAS  Google Scholar 

  70. Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19(6):852–857

    Article  CAS  Google Scholar 

  71. Yao S-H, Yuan J-K, Zhou T, Dang Z-M, Bai J (2011) Stretch-modulated carbon nanotube alignment in ferroelectric polymer composites: characterization of the orientation state and its influence on the dielectric properties. J Phys Chem C 115(40):20011–20017

    Article  CAS  Google Scholar 

  72. Zhou T, Zha J-W, Hou Y, Wang D, Zhao J, Dang Z-M (2011) Surface-functionalized MWNTs with emeraldine base: preparation and improving dielectric properties of polymer nanocomposites. ACS Appl Mater Interfaces 3(12):4557–4560

    Article  CAS  Google Scholar 

  73. Wu C, Huang X, Wu X, Yu J, Xie L, Jiang P (2012) TiO2-nanorod decorated carbon nanotubes for high-permittivity and low-dielectric-loss polystyrene composites. Comp Sci Technol 72(4):521–527

    Article  CAS  Google Scholar 

  74. Wu C, Huang X, Xie L, Yu J, Jiang P (2011) Morphology-controllable graphene-TiO2 nanorod hybrid nanostructures for polymer composites with high dielectric performance. J Mater Chem 21(44):17729–17736

    Article  CAS  Google Scholar 

  75. Zhang S, Wang H, Wang G, Jiang Z (2012) Material with high dielectric constant, low dielectric loss, and good mechanical and thermal properties produced using multi-wall carbon nanotubes wrapped with poly(ether sulphone) in a poly(ether ether ketone) matrix. Appl Phys Lett 101:012904

    Article  Google Scholar 

  76. Liu H, Shen Y, Song Y, Nan C-W, Lin Y, Yang X (2011) Carbon nanotube array/polymer core/shell structured composites with high dielectric permittivity, low dielectric loss, and large energy density. Adv Mater 23(43):5104–5108

    Article  CAS  Google Scholar 

  77. Wang B, Liang G, Jiao Y, Gu A, Liu L, Yuan L et al (2013) Two-layer materials of polyethylene and a carbon nanotube/cyanate ester composite with high dielectric constant and extremely low dielectric loss. Carbon 54:224–233

    Article  CAS  Google Scholar 

  78. Wu H, Gu A, Liang G, Yuan L (2011) Novel permittivity gradient carbon nanotubes/cyanate ester composites with high permittivity and extremely low dielectric loss. J Mater Chem 21(38):14838–14848

    Article  CAS  Google Scholar 

  79. Yuan J, Yao S, Li W, Sylvestre A, Bai J (2014) Vertically aligned carbon nanotube arrays on SiC microplatelets: a high figure-of-merit strategy for achieving large dielectric constant and low loss in polymer composites. J Phys Chem C 118(40):22975–22983

    Article  CAS  Google Scholar 

  80. Li W, Yuan J, Lin Y, Yao S, Ren Z, Wang H et al (2013) The controlled formation of hybrid structures of multi-walled carbon nanotubes on SiC plate-like particles and their synergetic effect as a filler in poly(vinylidene fluoride) based composites. Carbon 51:355–364

    Article  CAS  Google Scholar 

  81. Zhou Y, Wang L, Zhang H, Bai Y, Niu Y, Wang H (2012) Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers. Appl Phys Lett 101:012903

    Article  Google Scholar 

  82. International Technology Roadmap of Semiconductors (2013) http://www.itrs.net.

  83. Taa Z, Yang S, Ge Z, Chen J, Fan L (2007) Synthesis and properties of novel fluorinated epoxy resins based on 1,1-bis(4-glycidylesterphenyl)1-(3'-trifluoromethylphenyl)-2,2,2-trifluo roethane. Eur Polym J 43(2):550–560

    Article  Google Scholar 

  84. Shamiryan D, Abell T, Iacopi F, Maex K (2004) Low-k dielectric materials. Mater Today 7(1):34–39

    Article  CAS  Google Scholar 

  85. Ma S, Wang Y, Min Z, Zhong L (2013) Nano/mesoporous polymers based low-k dielectric materials: a review on methods and advances. Adv Polym Technol 32:21358

    Article  Google Scholar 

  86. Jiang LZ, Liu JG, Wu DZ, Li HQ, Jin RG (2006) A methodology for the preparation of nanoporous polyimide films with low dielectric constants. Thin Solid Films 510(1-2):241–246

    Article  CAS  Google Scholar 

  87. Dang Z-M, Ma L-J, Zha J-W, Yao S-H, Xie D, Chen Q et al (2009) Origin of ultralow permittivity in polyimide/mesoporous silicate nanohybrid films with high resistivity and high breakdown strength. J Appl Phys 105:044104

    Article  Google Scholar 

  88. Suzuki N, Kiba S, Yamauchi Y (2011) Low dielectric property of novel mesoporous silica/polymer composites using smart molecular caps: theoretical calculation of air space encapsulated inside mesopores. Micropor Mesopor Mater 138(1-3):123–131

    Article  CAS  Google Scholar 

  89. Shan W, Chen L, Chu Y, Zhao F, Liang G, Gu A et al (2013) Synthesis of a fully capped mesoporous silica and its hybrids with extremely low dielectric constant and loss. Micropor Mesopor Mater 176:199–208

    Article  CAS  Google Scholar 

  90. Min C-K, Wu T-B, Yang W-T, Chen C-L (2008) Functionalized mesoporous silica/polyimide nanocomposite thin films with improved mechanical properties and low dielectric constant. Compos Sci Technol 68(6):1570–1578

    Article  CAS  Google Scholar 

  91. Gibson LT (2014) Mesosilica materials and organic pollutant adsorption: part a removal from air. Chem Soc Rev 43(15):5163–5172

    Article  CAS  Google Scholar 

  92. Kuo S-W, Chang F-C (2011) POSS related polymer nanocomposites. Prog Polym Sci 36(12):1649–1696

    Article  CAS  Google Scholar 

  93. Ye Y-S, Chen W-Y, Wang Y-Z (2006) Synthesis and properties of low-dielectric-constant polyimides with introduced reactive fluorine polyhedral oligomeric silsesquioxanes. J Polym Sci Part a-Polym Chem 44(18):5391–5402

    Article  CAS  Google Scholar 

  94. Wang Y-Z, Chen W-Y, Yang C-C, Lin C-L, Chang F-C (2007) Novel epoxy nanocomposite of low Dk introduced fluorine-containing POSS structure. J Polym Sci Part B-Polym Phys 45(4):502–510

    Article  CAS  Google Scholar 

  95. Wahab MA, Mya KY, He C (2008) Synthesis, morphology, and properties of hydroxyl terminated-POSS/polyimide low-k nanocomposite films. J Polym Sci Part a-Polym Chem 46(17):5887–5896

    Article  Google Scholar 

  96. Tseng M-C, Liu Y-L (2010) Preparation, morphology, and ultra-low dielectric constants of benzoxazine-based polymers/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer 51(23):5567–5575

    Article  CAS  Google Scholar 

  97. Geng Z, Huo M, Mu J, Zhang S, Lu Y, Luan J et al (2014) Ultra low dielectric constant soluble polyhedral oligomeric silsesquioxane (POSS)-poly(aryl ether ketone) nanocomposites with excellent thermal and mechanical properties. J Mater Chem C 2(6):1094–1103

    Article  CAS  Google Scholar 

  98. Kuang Z, Chen Y, Lu Y, Liu L, Hu S, Wen S et al (2015) Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity. Small 11(14):1655–1659

    Article  CAS  Google Scholar 

  99. Li Y, Huang X, Hu Z, Jiang P, Li S, Tanaka T (2011) Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl Mater Interfaces 3(11):4396–4403

    Article  CAS  Google Scholar 

  100. Huang X, Zhi C, Jiang P, Golberg D, Bando Y, Tanaka T (2013) Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv Funct Mater 23(14):1824–1831

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by France ANR and Solvay through the Project ELENA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkai Yuan PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yuan, J., Yao, S., Poulin, P. (2016). Dielectric Constant of Polymer Composites and the Routes to High-k or Low-k Nanocomposite Materials. In: Huang, X., Zhi, C. (eds) Polymer Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-28238-1_1

Download citation

Publish with us

Policies and ethics