Skip to main content

The Interpretive Significance of Pathognomonic Signs

  • Chapter
  • First Online:
Large-Scale Brain Systems and Neuropsychological Testing

Abstract

There are a number of behaviors that are almost always clinically relevant and diagnostically significant. These behaviors are usually observed infrequently, depending upon the age of the person being evaluated and the pathology in question. Reitan, when initially examining adult populations, originally referred to these behaviors as “pathognomonic” signs of impairment [1]. None of these pathognomonic behaviors follow the standardized normal distribution of a bell-shaped curve or any of the assumptions which support statistical quantification. Pathognomonic signs follow a and are often more within the realm of “have-have not” observations. The INS DICTIONARY OF NEUROPSYCHOLOGY defines pathognomonic signs as “findings that are specific for a given disease and that are not associated with other conditions” [2]. The term originally referred to characteristic behaviors observed in specific disease processes, and, outside the context of specific diseases, pathognomonic signs have not been well studied in pediatric populations with neuro-developmental disorders.

“Any fact facing us is not as important as our attitude toward it, for that determines our success or failure.”

Norman Vincent Peale

“I don’t believe in psychology. I believe in good moves.”

Robert James Fischer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reitan, R., & Wolfson, D. (2008). Can neuropsychological testing produce unequivocal evidence of brain damage? 1. Testing for specific deficits. Applied Neuropsychology, 15(1), 33–38.

    Article  PubMed  Google Scholar 

  2. Loring, D. W. (1999). INS dictionary of neuropsychology (p. 124). New York, NY: Oxford University Press.

    Google Scholar 

  3. Baron, I. S. (2004). Neuropsychological evaluation of the child. New York, NY: Oxford University Press.

    Google Scholar 

  4. Sbordone, R. J. (2001). Limitations of neuropsychological testing to predict the cognitive and behavioral functioning of persons with brain injury in real-world settings. NeuroRehahilitation, 16, 199–201.

    Google Scholar 

  5. Ashby, F. G., & Ennis, J. M. (2006). The role of the basal ganglia in category learning. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 46, pp. 1–36). New York, NY: Elsevier.

    Google Scholar 

  6. Ashby, F. G., Ennis, J. M., & Spiering, B. J. (2007). A neurobiological theory of automaticity in perceptual categorization. Psychological Review, 114, 632–656.

    Article  PubMed  Google Scholar 

  7. Ashby, F. G., & O’Brien, J. B. (2005). Category learning and multiple memory systems. Trends in Cognitive Sciences, 9, 83–89.

    Article  PubMed  Google Scholar 

  8. Kaspar, J. C., & Sokolec, J. (1980). Relationship between neurological dysfunction and a test of speed of motor performance. Journal of Clinical Neuropsychology, 2, 13–21.

    Article  Google Scholar 

  9. Reitan, R. M., & Wolfson, D. (2009). The Halstead-Reitan neuropsychological test battery for adults: Theoretical, methodological, and validation bases. In I. Grant & K. M. Adams (Eds.), Neuropsychological assessment of neuropsychiatric and neuromedical disorders (3rd ed., pp. 3–24). New York, NY: Oxford University Press.

    Google Scholar 

  10. Ito, M. (1997). Cerebellar microcomplexes. In J. D. Schmahmann (Ed.), The cerebellum and cognition (pp. 475–487). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  11. Ito, M. (2011). The cerebellum: Brain for an implicit self. Upper Saddle River, NJ: FT Press.

    Google Scholar 

  12. Koziol, L. F., & Lutz, J. T. (2013). From movement to thought: The development of executive function. Applied Neuropsychology: Child, 2(2), 104–115.

    Article  Google Scholar 

  13. Benton, A. L., Hamsher, K., Varney, N. R., & Spreen, O. (1983). Contributions to neuropsychological assessment: A clinical manual. New York, NY: Oxford University Press.

    Google Scholar 

  14. Yener, G. G., & Zaffos, A. (1999). Memory and the frontal lobes. In B. L. Miller & J. L. Cummings (Eds.), The human frontal lobes: Functions and disorders (pp. 288–303). New York, NY: Guilford Press.

    Google Scholar 

  15. Caplan, D. (2003). Aphasic syndromes. In K. M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (4th ed., pp. 14–34). New York, NY: Oxford University Press.

    Google Scholar 

  16. Bauer, R. M., & Demery, J. A. (2003). Agnosia. In K. M. Heilman & E. Valenstein (Eds.), Clinical neuropsycholgy (4th ed., pp. 236–295). New York, NY: Oxford University Press.

    Google Scholar 

  17. Salmon, D. P., & Bondi, M. W. (2009). Neuropsychological assessment of dementia. Annual Review of Psychology, 60, 257–282.

    Article  PubMed  Google Scholar 

  18. Poore, M. A., & Barlow, S. M. (2009). Suck predicts neuromotor integrity and developmental outcomes. Perspectives on Speech Sciences and Orofacial Disorders, 19, 44–51.

    Article  Google Scholar 

  19. Nigg, J. T., Willcutt, E. G., Doyle, A. E., & Sonuga-Barke, E. J. (2005). Causal heterogeneity in attention-deficit/hyperactivity disorder: do we need neuropsychologically impaired subtypes? Biological Psychiatry, 57(11), 1224–1230.

    Article  PubMed  Google Scholar 

  20. Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biological Psychiatry, 57(11), 1336–1346.

    Article  PubMed  Google Scholar 

  21. Greenberg, L. M. (2011). The test of variables of attention (Version 8.0) [Computer software]. Los Alamitos, CA: The TOVA Company.

    Google Scholar 

  22. Riccio, C. A., Reynolds, C. R., Lowe, P., & Moore, J. J. (2002). The continuous performance test: A window on the neural substrates for attention? Archives of Clinical Neuropsychology, 17(3), 235–272.

    Article  PubMed  Google Scholar 

  23. Doyle, A. E., Biederman, J., Seidman, L. J., Weber, W., & Faraone, S. V. (2000). Diagnostic efficiency of neuropsychological test scores for discriminating boys with and without attention deficit-hyperactivity disorder. Journal of Consulting and Clinical Psychology, 68(3), 477–488.

    Article  PubMed  Google Scholar 

  24. Hinshaw, S. P., Carte, E. T., Sami, N., Treuting, J. J., & Zupan, B. A. (2002). Preadolescent girls with attention-deficit/hyperactivity disorder: II. Neuropsychological performance in relation to subtypes and individual classification. Journal of Consulting and Clinical Psychology, 70(5), 1099–1111.

    Article  PubMed  Google Scholar 

  25. Koziol, L. F., & Stevens, M. C. (2012). Neuropsychological assessment and the paradox of ADHD. Applied Neuropsychology: Child, 1(2), 79–89.

    Article  Google Scholar 

  26. Koziol, L. F., Budding, D. E., & Chidekel, D. (2013). ADHD as a model of brain-behavior relationships. New York, NY: Springer.

    Book  Google Scholar 

  27. Koziol, L. F. (2014). The myth of executive functioning: Missing elements in conceptualization, evaluation, and assessment. New York, NY: Springer.

    Google Scholar 

  28. Cohen, R. A. (2014). Subcortical and limbic attentional influences. The neuropsychology of attention. New York, NY: Springer.

    Book  Google Scholar 

  29. Posner, M. I. (2004). Cognitive neuroscience of attention. New York, NY: Guilford Press.

    Google Scholar 

  30. Rosvold, H. E., Mirsky, A. F., Sarason, I., Bransome, E. D., Jr., & Beck, L. H. (1956). A continuous performance test of brain damage. Journal of Consulting Psychology, 20, 343–350.

    Article  PubMed  Google Scholar 

  31. Stevens, C., Lauinger, B., & Neville, H. (2009). Differences in the neural mechanisms of selective attention in children from different socioeconomic backgrounds: An event-related brain potential study. Developmental Science, 12(4), 634–646.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiolog, 106(3), 1125–1165.

    Google Scholar 

  33. Castellanos, F. X., & Proal, E. (2012). Large-scale brain systems in ADHD: Beyond the prefrontal-striatal model. Trends in Cognitive Sciences, 16(1), 17–26.

    Article  PubMed  Google Scholar 

  34. Koziol, L. F., Joyce, A. W., & Wurglitz, G. (2014). The neuropsychology of attention: Revisiting the “Mirsky model”. Applied Neuropsychology: Child, 3(4), 297–307.

    Article  Google Scholar 

  35. Mirsky, A. F. (1987). Behavioral and psychophysiological markers of disordered attention. Environmental Health Perspectives, 74, 191–199.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mirsky, A. F. (1996). Disorders of attention: A neuropsychological perspective. In G. R. Lyon & N. A. Krasnegor (Eds.), Attention, memory, and executive function (pp. 71–95). Baltimore, MD: Paul H. Brookes.

    Google Scholar 

  37. Mirsky, A. F., Anthony, B. J., Duncan, C. C., Ahearn, M. B., & Kellam, S. G. (1991). Analysis of the elements of attention: A neuropsychological approach. Neuropsychology Review, 2, 109–145.

    Article  PubMed  Google Scholar 

  38. Mirsky, A. F., & Duncan, C. C. (2004). The attention battery for children: A systematic approach to assessment. In G. Goldstein, S. R. Beers, & M. Hersen (Eds.), Comprehensive handbook of psychological assessment (pp. 277–292). Hoboken, NJ: Wiley.

    Google Scholar 

  39. Mirsky, A. F., Fantie, B., & Tatman, J. (1995). Assessment of attention across the lifespan. In R. L. Mapou & J. Spector (Eds.), Neuropsychological assessment: A clinical approach (pp. 17–48). New York, NY: Plenum.

    Chapter  Google Scholar 

  40. Gordon, M. (1983). The Gordon diagnostic system. DeWitt, NY: Gordon Systems.

    Google Scholar 

  41. Robertson, I. H. (2004). Examining attentional rehabilitation. In M. I. Posner (Ed.), Cognitive neuroscience of attention (pp. 407–419). New York, NY: Guilford Press.

    Google Scholar 

  42. Hager, F., Volz, H. P., Gaser, C., Mentzel, H. J., Kaiser, W. A., & Sauer, H. (1998). Challenging the anterior attentional system with a continuous performance task: a functional magnetic resonance imaging approach. European Archives of Psychiatry and Clinical Neuroscience, 248, 161–170.

    Article  PubMed  Google Scholar 

  43. Schulz, K. P., Fan, J., Tang, C. Y., Newcorn, J. H., Buchsbaum, M. S., Cheung, A. M. & Halperin JM. (2004). Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: an event-related FMRI study. American Journal of Psychiatry, 161, 1650–1657.

    Google Scholar 

  44. Stevens, M. C., Kiehl, K. A., Pearlson, G. D., & Calhoun, V. D. (2007). Functional neural networks underlying response inhibition in adolescents and adults. Behavioural Brain Research, 181(1), 12–22.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang, D., Buckner, R. L., & Liu, H. (2014). Functional specialization in the human brain estimated by intrinsic hemispheric interaction. The Journal of Neuroscience, 34(37), 12341–12352.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Koziol, L. F., Barker, L. A., & Jansons, L. (2015). Attention and other constructs: Evolution or revolution? Applied Neuropsychology: Child, 4(2), 123–131.

    Article  Google Scholar 

  47. Denckla, M. B., & Reiss, A. L. (1997). Prefrontal-subcortical circuits in developmental disorders. In N. A. Krasnegor, G. R. Lyon, & P. S. Goldman-Rakic (Eds.), Development of the prefrontal cortex: Evolution, neurobiology, and behavior (pp. 283–294). Baltimore, MD: Paul H. Brookes.

    Google Scholar 

  48. Cortese, S., Kelly, C., Chabernaud, C., Proal, E., Di Martino, A., Milham, M. P., & Castellanos, F. X. (2012). Toward systems neuroscience of ADHD: A meta-analysis of 55 fMRI studies. The American Journal of Psychiatry, 169(10), 1038–1055.

    Google Scholar 

  49. Frank, M. J., Santamaria, A., O’Reilly, R. C., & Willcutt, E. (2007). Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 32, 1583–1599.

    Article  PubMed  Google Scholar 

  50. Frank, M. J., Scheres, A., & Sherman, S. J. (2007). Understanding decision-making deficits in neurological conditions: Insights from models of natural action selection. Philosophical Transactions of the Royal Society of London, 362, 1641–1654.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Douglas, V. I., Barr, R. G., Amin, K., O’Neill, M. E., & Britton, B. G. (1988). Dosage effects and individual responsivity to methylphenidate in attention deficit disorder. Journal of Child Psychology and Psychiatry, 29(4), 453–475.

    Article  PubMed  Google Scholar 

  52. Berridge, C. W., & Devilbiss, D. M. (2011). Psychostimulants as cognitive enhancers: the prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder. Biological Psychiatry, 69(12), e101–111.

    Article  PubMed  Google Scholar 

  53. Wilens, T. E. (2008). Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder. Journal of Clinical Psychopharmacology, 28(3 Suppl 2), S46–S53.

    Article  PubMed  Google Scholar 

  54. Arnsten, A. F. T., & Pliszka, S. R. (2011). Catecholamine influences on prefrontal cortical function: relevance to treatment of attention deficit/hyperactivity disorder and related disorders. Pharmacology, Biochemistry, and Behavior, 99(2), 211–216.

    Article  PubMed  Google Scholar 

  55. Berridge, C. W., Devilbiss, D. M., Andrzejewski, M. E., Arnsten, A. F., Kelley, A. E., Schmeichel, B., … Spencer, R. C. (2006). Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biological Psychiatry, 60(10), 1111–1120.

    Google Scholar 

  56. Rubia, K., Smith, A., Halari, R., Matukura, F., Mohammad, M., Taylor, E., & Brammer, M. J. (2009). Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure Conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure Attention-Deficit/Hyperactivity Disorder during sustained attention. The American Journal of Psychiatry, 166, 83–94.

    Google Scholar 

  57. Tana, M. G., Montin, E., Cerutti, S., & Bianchi, A. M. (2010). Exploring cortical attentional system by using fMRI during a continuous perfomance test. Computational Intelligence and Neuroscience, 2010, 329213. doi:10.1155/2010/329213.

    Article  Google Scholar 

  58. Feifer, S. G., & Della Toffalo, D. A. (2007). Integrating RTI with cognitive neuroscience: A scientific approach to reading. Middletown, MD: School Neuropsych Press.

    Google Scholar 

  59. Shaywitz, S. (2003). Overcoming dyslexia: A new and complete science-based program for reading problems at any level (p. 123). New York, NY: Knopf.

    Google Scholar 

  60. Mann, V. (1998). Language problems: A key to early reading problems. In B. Wong (Ed.), Learning about learning disabilities (pp. 129–162). Orlando, FL: Academic Press.

    Google Scholar 

  61. Nicolson, R. (2000). Dyslexia and dyspraxia: Commentary. Dyslexia, 6, 203–204.

    Article  PubMed  Google Scholar 

  62. Nicolson, R. I., & Fawcett, A. (2005). Developmental dyslexia, learning and the cerebellum. In W. W. Fleischhacker & D. J. Brooks (Eds.), Neurodevelopmental disorders (pp. 19–36). Vienna, Austria: Springer.

    Chapter  Google Scholar 

  63. Nicolson, R. I., & Fawcett, A. J. (2006). Do cerebellar deficits underlie phonological problems in dyslexia‵? Developmental Science, 9, 259–262.

    Article  PubMed  Google Scholar 

  64. Nicolson, R. I., & Fawcett, A. J. (2007). Procedural learning difficulties: reuniting the developmental disorders’? Trends in Neuroscience, 30, 135–141.

    Article  Google Scholar 

  65. Ackermann, H. (2008). Cerebellar contributions to speech production and speech perception: Psycholinguistic and neurobiological perspectives. Trends in Neurosciences, 31(6), 265–272.

    Article  PubMed  Google Scholar 

  66. Shaywitz, S. (1998). Current concepts: Dyslexia. The New England Journal of Medicine, 338(5), 307–312.

    Article  PubMed  Google Scholar 

  67. Koziol, L. F., Barker, L. A., & Jansons, L. (2015). Conceptualizing developmental language disorders: A theoretical framework including the role of the cerebellum in language-related functioning. In P. Marien & M. Manto (Eds.), The linguistic cerebellum. San Diego, CA: Academic Press.

    Google Scholar 

  68. Hillert, D. (2014). The nature of language: Evolution, paradigms, and circuits. New York, NY: Springer.

    Book  Google Scholar 

  69. Mann, V. (1998). Language problems: A key to early reading problems. In B. Wong (Ed.), Learning about learning disabilities (pp. 213–228). Orlando, FL: Academic Press.

    Google Scholar 

  70. Miller, C. J., Sanchez, J., & Hynd, G. W. (2003). Neurological correlates of reading disabilities. In L. Swanson & S. Graham (Eds.), Handbook of research on learning disabilities (pp. 242–255). New York, NY: Guilford Press.

    Google Scholar 

  71. Bowers, P. G., & Ishaik, G. (2003). RAN’s contribution to understanding reading disabilities. In S. Graham, H. Swanson, & K. R. Lee Harris (Eds.), Handbook of learning disabilities (pp. 140–157). New York, NY: Guilford Press.

    Google Scholar 

  72. Liberman, I. Y., Shankweiler, D., Fischer, F. W., & Carter, B. (1974). Explicit syllable and phoneme segmentation in the young child. Journal of Experimental Child Psychology, 18, 201–212.

    Article  Google Scholar 

  73. Mann, V. A., & Liberman, I. Y. (1984). Phonological awareness and verbal short-term memory. Journal of Learning Disabilities, 17, 592–598.

    Article  PubMed  Google Scholar 

  74. Wolf, M. (1984). Naming, reading and the dyslexias: A longitudinal overview. Annals of Dyslexia, 34, 87–115.

    Article  PubMed  Google Scholar 

  75. Mann, V. A. (1984). Longitudinal prediction and prevention of early reading difficulty. Annals of Dyslexia, 34(1), 117–136.

    Article  PubMed  Google Scholar 

  76. Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological assessment (5th ed.). New York, NY: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koziol, L.F., Beljan, P., Bree, K., Mather, J., Barker, L. (2016). The Interpretive Significance of Pathognomonic Signs. In: Large-Scale Brain Systems and Neuropsychological Testing. Springer, Cham. https://doi.org/10.1007/978-3-319-28222-0_5

Download citation

Publish with us

Policies and ethics