Skip to main content

Classifications: The Utopia of Classifying the Unclassifiable

  • Chapter
  • First Online:
Ichnoentomology

Part of the book series: Topics in Geobiology ((TGBI,volume 37))

  • 1055 Accesses

Abstract

Traditional classifications of ichnology, based on marine and lacustrine trace fossils, were not prepared to include insect trace fossils, which since the 90s have been producing a deep exercise of thinking and changes in these classifications. Many insect trace fossils, such as cocoons, ovipositions, caddisfly cases, galls, subaerial nests, fall in the grey area of “other evidence of activity” in current classifications or even some of them are questioned as true trace fossils. Insect trace fossils in plant remains are included in the category of bioerosion. The distinction among compound and composite trace fossils is challenged by many insect trace fossils, which are here in a new category: coproduced trace fossils. Larva and adult of the same species of insect may be considered a single producer or two different producers? As an exercise, the ethological classification and categories is reviewed taken in account the selection of substrate as the first order ethological trait to be considered. Different aspects of ichnotaxonomy as the most significant and sound ichnological classification are reviewed. The convenience of creating ichnofamilies is stressed and the already recognized ones are briefly reviewed. Some problems related to trace fossil ichnotaxonomical identification, such as preservational biases, size, distortion with age, are analyzed.

Meditate on this, I will

(Master Yoda 2002, Star Wars II: Attack of the Clones)

“There’s a man going around taking names and he decides who to free and who to blame”

(Johnny Cash 2002, The Man Comes Around)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Zarza AM, Genise JF, Verde M (2011) Sedimentology, diagenesis and ichnology of Cretaceous and Palaeogene calcretes and palustrine carbonates from Uruguay. Sediment Geol 236:45–61

    Article  Google Scholar 

  • Alonso-Zarza AM, Genise JF, Verde M (2014) Paleoenvironments and ichnotaxonomy of insect trace fossils in continental mudflat deposits of the Miocene Calatayud-Daroca Basin, Zaragoza, Spain. Palaeogeogr Palaeoclimatol Palaeoecol 414:342–351

    Article  Google Scholar 

  • Bertling M, Braddy S, Bromley RG, Demathieu G, Genise JF, Mikulás R, Nielsen JK, Nielsen KSS, Rindsberg A, Schlirf M, Uchman A (2006) Names for trace fossils: a uniform approach. Lethaia 39:265–286

    Article  Google Scholar 

  • Bown TM (1982) Ichnofossils and rizoliths of the nearshore fluvial Jebel Qatrani Formation (Oligocene), Fayum Province, Egypt. Palaeogeogr Palaeoclimatol Palaeoecol 40:255–309

    Article  Google Scholar 

  • Bown TM, Kraus MJ (1983) Ichnofossils of the alluvial Willwood Formation (Lower Eocene), Bighorn Basin, Northwestern Wyoming, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 43:95–128

    Article  Google Scholar 

  • Bown TM, Laza JH (1990) A Miocene fossil termite nest from southern Argentina and its paleoclimatological implications. Ichnos 1:73–79

    Article  Google Scholar 

  • Bown TM, Ratcliffe BC (1988) The origin of Chubutolithes Ihering, ichnofossils from the Eocene and Oligocene of Chubut Province, Argentina. J Paleontol 62:163–167

    Article  Google Scholar 

  • Bown TM, Hasiotis ST, Genise JF, Maldonado F, Brouwers EM (1997) Trace fossils of Hymenoptera and other insects and paleoenvironments of the Claron Formation (Paleocene and Eocene), Southwestern Utah. U.S. Geol Surv Bull 2153:42–58

    Google Scholar 

  • Bromley RG (1990) Trace fossils. Unwin Hyman, London

    Google Scholar 

  • Brown RW (1934) Celliforma spirifer the fossil larval chambers of mining bees. J Wash Acad Sci 24:532–539

    Google Scholar 

  • Brown RW (1941a) The comb of a wasp nest from the Upper Cretaceous of Utah. Am J Sci 239:54–56

    Article  Google Scholar 

  • Buatois LA, Mángano MG (2011) Ichnology. Organism-substrate interactions in space and time. Cambridge University Press, New York

    Book  Google Scholar 

  • Crimes TP (1970) Trilobite tracks and other trace fossils from the Upper Cambrian of North Wales. Geol J 7:47–68

    Article  Google Scholar 

  • Duringer P, Schuster M, Genise JF, Mackaye HT, Vignaud P, Brunet M (2007) New termite trace fossils: Galleries, nests and fungus combs from the Chad basin of Africa (Upper Miocene-Lower Pliocene). Palaeogeogr Palaeoclimatol Palaeoecol 251:323–353

    Article  Google Scholar 

  • Ekdale AA (1985) Paleoecology of the marine endobenthos. Palaeogeogr Palaeoclimatol Palaeoecol 50:63–81

    Article  Google Scholar 

  • Ekdale AA, Bromley RG, Pemberton G (1984) Ichnology. The use of trace fossils in sedimentology and stratigraphy. SEPM Short Course 15:1–315

    Google Scholar 

  • Frey RW (1973) Concepts in the study of biogenic sedimentary structures. J Sediment Petrol 43:6–19

    Google Scholar 

  • Frey RW, Pemberton SG (1984) Trace fossil facies models. In: Walker RG ( ed) Facies models. Geosci Canada Reprint Ser 1:189–207

    Google Scholar 

  • Frey RW, Pemberton SG (1985) Biogenic structures in outcrops and cores I. Approaches to ichnology. Bull Can Petrol Geol 33:72–115

    Google Scholar 

  • Frey RW, Wheatcroft RA (1989) Organism-substrate relations and their impact on sedimentary petrology. J Geol Educ 37:261–279

    Article  Google Scholar 

  • Fürsich FT (1974) On Diplocraterion Torell 1870 and the significance of morphological features in vertical, spreiten-bearing, U-shaped trace fossils. J Paleontol 48:952–962

    Google Scholar 

  • Genise JF (1995a) Upper Cretaceous trace fossils in permineralized plant remains from Patagonian Argentina. Ichnos 3:287–299

    Article  Google Scholar 

  • Genise JF (1997) A fossil termite nest from the Marplatan stage (Late Pliocene) of Argentina: Paleoclimatic indicator. Palaeogeogr Palaeoclimatol Palaeoecol 136:139–144

    Article  Google Scholar 

  • Genise JF (2000) The ichnofamily Celliformidae for Celliforma and allied ichnogenera. Ichnos 7:267–282

    Article  Google Scholar 

  • Genise JF (2004a) Fungus traces in wood: a rare bioerosional item. In: Abstract book of the first international congress on ichnology, Trelew, Argentina, p 37

    Google Scholar 

  • Genise JF, Bown TM (1990) The constructor of the ichnofossil Chubutolithes. J Paleontol 64:482–483

    Article  Google Scholar 

  • Genise JF, Bown TM (1994a) New Miocene scarabeid and hymenopterous nests and Early Miocene (Santacrucian) paleoenvironments, Patagonian Argentina. Ichnos 3:107–117

    Article  Google Scholar 

  • Genise JF, Bown TM (1994b) New trace fossils of termites (Insecta: Isoptera) from the Late Eocene-Early Miocene of Egypt, and the reconstruction of ancient isopteran social behavior. Ichnos 3:155–183

    Article  Google Scholar 

  • Genise JF, Bown TM (1996) Uruguay Roselli 1938 and Rosellichnus, n. ichnogenus: two ichnogenera for cluster of fossil bee cells. Ichnos 4:199–217

    Article  Google Scholar 

  • Genise JF, Hazeldine PL (1998b) The ichnogenus Palmiraichnus Roselli for fossil bee cells. Ichnos 6:151–166

    Article  Google Scholar 

  • Genise JF, Verde M (2000) Corimbatichnus fernandezi: a cluster of fossil bee cells from the Late Cretaceous-Early Tertiary of Uruguay. Ichnos 7:115–125

    Article  Google Scholar 

  • Genise JF, Laza JH, Fernández W, Frogoni J (2002a) Cámaras pupales fósiles de coleópteros: el icnogénero Rebuffoichnus Roselli. Rev Mus Argent Cienc Nat 4:159–165

    Article  Google Scholar 

  • Genise JF, Melchor RN, Bellosi ES, González MG, Krause JM (2007) New insect pupation chambers (Pupichnia) from the Upper Cretaceous of Patagonia, Argentina. Cretac Res 28:545–559

    Article  Google Scholar 

  • Genise JF, Alonso-Zarza AM, Verde M, Melendez A (2013a) Insect trace fossils in aeolian deposits and calcretes from the Canary Islands: their ichnotaxonomy, producers, and palaeoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 377:110–124

    Article  Google Scholar 

  • Hasiotis ST (2003) Complex ichnofossils of solitary to social soil organisms: understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 192:259–320

    Article  Google Scholar 

  • Hasiotis ST, Dubiel RF (1995) Termite (Insecta: Isoptera) nest ichnofossils from the Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. Ichnos 4:119–130

    Article  Google Scholar 

  • Hasiotis ST, Aslan A, Bown TM (1993a) Origin, architecture, and paleoecology of the Early Eocene continental ichnofossil Scaphichnium hamatum, integration of ichnology and paleopedology. Ichnos 3:1–9

    Article  Google Scholar 

  • Haubold H (1996) Ichnotaxonomie und Klassifikation von Tetrapodenfährten aus dem Perm. Hallesches Jahr Geowiss B 18:23–88

    Google Scholar 

  • Holub V, Kozur H (1981) Arthropodenfährten aus dem Rotliegenden der CSSR. Geol Paläont Mitt Innsbruck 11:95–148

    Google Scholar 

  • Johnston PA, Eberth DA, Anderson PK (1996) Alleged vertebrate eggs from Upper Cretaceous redbeds, Gobi Desert, are fossil insect (Coleoptera) pupal chambers: Fictovichnus new ichnogenus. Can J Earth Sci 33:511–525

    Article  Google Scholar 

  • Von Ihering H (1922) Untitled. Palaeontol Z 4:113

    Google Scholar 

  • Kelly SRA, Bromley RG (1984) Ichnological nomenclature of clavate borings. Palaeontology 27:793–807

    Google Scholar 

  • Knaust D (2012a) Trace-fossil systematics. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments, vol 64, Developments in sedimentology. Elsevier, Amsterdam, pp 79–102

    Chapter  Google Scholar 

  • Kozur HW, Lemone DV (1995) New terrestrial arthropod trackways from the Abo Member (Sterlitamakian, Late Sakmarian, Late Wolfcampian) of the Shalem Colony Section, Robledo Mountains, New Mexico. In: Lucas SG, Heckert AB (eds) Early Permian footprints and facies. New Mexico Mus Nat Hist Sci Bull 6:107–113

    Google Scholar 

  • Krause JM, Bown TM, Bellosi ES, Genise JF (2008) Trace fossils of cicadas in the Cenozoic of Central Patagonia, Argentina. Palaeontology 51:405–418

    Article  Google Scholar 

  • Laza JH (1982) Signos de actividad atribuibles a Atta (Myrmicidae, Hymenoptera), en el Mioceno de la Provincia de La Pampa. República Argentina Significación paleozoogeográfica Ameghiniana 19:109–124

    Google Scholar 

  • Laza JH (2006a) Dung-beetle fossil brood balls: the ichnogenera Coprinisphaera Sauer and Quirogaichnus (Coprinisphaeridae). Ichnos 13:217–235

    Article  Google Scholar 

  • Laza JH (2006b) Termiteros del Plioceno y Pleistoceno de la provincia de Buenos Aires. Rep Argent Signif paleoambiental paleozoogeogr Ameghiniana 43:641–648

    Google Scholar 

  • Lucas SG (2001) Taphotaxon. Lethaia 34:30

    Article  Google Scholar 

  • Martin AJ, Varricchio DJ (2011) Paleoecological utility of insect trace fossils in dinosaur nesting sites of the two medicine formation (Campanian), Choteau, Montana. Hist Biol 23:15–25

    Article  Google Scholar 

  • Martinsson A (1970) Toponomy of trace fossils. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J Spec Issue 3:323–330

    Google Scholar 

  • Mikúlaš R, Genise JF (2003) Traces within traces: holes, pits and galleries in walls and filling of insect trace fossils in paleosols. Geol Acta 1:339–348

    Google Scholar 

  • Miller W III (2003a) Paleobiology of complex trace fossils. Palaeogeogr Palaeoclimatol Palaeoecol 192:3–14

    Article  Google Scholar 

  • Miller III W (2007a) Complex trace fossils. In: Miller III W (ed) Trace fossils. Concepts, problems, prospects. Elsevier, Amsterdam pp 483–490

    Google Scholar 

  • Minter NJ, Braddy SJ (2006) Walking and jumping with Palaeozoic apterygote insects. Palaeontology 49:827–835

    Article  Google Scholar 

  • Minter NJ, Braddy SJ, Davis RB (2007) Between a rock and a hard place: Arthropod trackways and ichnotaxonomy. Lethaia 40:365–375

    Article  Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 11:92–108

    Article  Google Scholar 

  • Pemberton SG, Frey RW, Saunders TD (1990) Trace fossils. In: Briggs DE, Crowther PR (eds) Palaeobiology. A synthesis. Blackwell Scientific Publications, Oxford, pp 355–362

    Google Scholar 

  • Pemberton SG, Frey RW, Ranger MJ, MacEachern J (1992) The conceptual framework of ichnology. In: Pemberton SG (ed) Applications of Ichnology to Petroleum Exploration. SEPM Core Workshop 17, Calgary, pp 1–32

    Google Scholar 

  • Pickerill RK (1994) Nomenclature and taxonomy of invertebrate trace fossils. In: Donovan SK (ed) The palaeobiology of trace fossils. John Wiley & Sons, New York, pp 3–42

    Google Scholar 

  • Pickerill RK, Narbonne GM (1995) Composite and compound ichnotaxa: a case example from the Ordovician of Québec, eastern Canada. Ichnos 5:53–69

    Article  Google Scholar 

  • Retallack GJ (1984) Trace fossils of burrowing beetles and bees in an Oligocene paleosol, Badlands National Park, South Dakota. J Paleontol 58:571–592

    Google Scholar 

  • Roberts EM, Tapanila L (2006) A new social insect nest from the Upper Cretaceous Kaiparowits formation of southern Utah. J Paleontol 80:768–774

    Article  Google Scholar 

  • Roselli FL (1939) Apuntes de geología y paleontología uruguaya. Sobre insectos del Cretácico del Uruguay o descubrimiento de admirables instintos constructivos de esa época. Bol Soc Amigos Cienc Nat “Kraglievich-Fontana” 1:72–102

    Google Scholar 

  • Roselli FL (1987) Paleoicnología. Nidos de insectos fósiles de la cubertura Mesozoica del Uruguay. Publ Mus Munic Nueva Palmira 1:1–56

    Google Scholar 

  • Sadler CJ (1993) Arthropod trace fossils from the Permian De Chelly Sandstone, northeastern Arizona. J Paleontol 67:240–249

    Article  Google Scholar 

  • Sánchez MV, Genise JF (2009) Cleptoparasitism and detritivory in dung beetle fossil brood balls from Patagonia, Argentina. Palaeontology 52:837–848

    Article  Google Scholar 

  • Sánchez MV, Krause JM, González MG, Dinghi PA, Genise JF (2010b) The pupation chamber of dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Coleopt Bull 64:277–284

    Article  Google Scholar 

  • Sánchez MV, Laza JH, Bellosi ES, Genise JF (2010c) Ichnostratigraphy of middle Cenozoic Coprinisphaera from central Patagonia: Insights into the evolution of dung beetles, herbivores and grass-dominated habitats. Palaeogeogr Palaeoclimatol Palaeoecol 297:633–648

    Article  Google Scholar 

  • Sarzetti LC, Labandeira CC, Muzón J, Wilf P, Cúneo R, Johnson K, Genise JF (2009) Odonatan endophytic oviposition from the Eocene of Patagonia: the ichnogenus Paleoovoidus and implications for behavioral stasis. J Paleontol 83:431–447

    Article  Google Scholar 

  • Sauer W (1955) Coprinisphaera ecuadoriensis, un fósil singular del Pleistoceno. Bol Inst Cienc Nat Univ Ecuador 1:123–132

    Google Scholar 

  • Seilacher A (1953) Studien zur Palichnologie I. Über die Methoden der Palichnologie. Neues Jahr Geol Paläont Abh 96:421–452

    Google Scholar 

  • Seilacher A (1964) Sedimentological classification and nomenclature of trace fossils. Sedimentology 3:253–256

    Article  Google Scholar 

  • Seilacher A (2007) Trace fossil analysis. Springer, Heidelberg

    Google Scholar 

  • Smith JJ, Platt BF, Ludvigson GA, Thomasson JR (2011) Ant-nest ichnofossils in honeycomb calcretes, Neogene Ogallala Formation, High Plains region of western Kansas, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 308:383–394

    Article  Google Scholar 

  • Verde M, Ubilla M, Jimenez JJ, Genise JF (2007) A new earthworm trace fossil from paleosols: aestivation chambers from the late Pleistocene Sopas Formation of Uruguay. Palaeogeogr Palaeoclimat Palaeoecol 243:339–347

    Article  Google Scholar 

  • Vialov OC (1972) The principles of trace fossil classification. Paleont Sbornik 9:60–66

    Google Scholar 

  • Vialov OC (1975) The fossil traces of nourishment of the insects. Paleontological Collection 12:147–155

    Google Scholar 

  • Vialov OC (1993) Trace fossils and their classification. In: Vialov OS, Fedonkin MA (eds) Trace fossils of extinct animals. Nauka, Moscow, pp 5–11

    Google Scholar 

  • Walter H (1983) Zur taxonomie, ökologie und biostratigraphie der ichnia liminisch-terrestrischer arthropoden des mitteleuropäischen jungpaläozoikums. Freiberger Forschungsheifte C 382:146–193

    Google Scholar 

  • Wenzel JW (1990) A social wasp’s nest from the Cretaceous period, Utah, USA and its biogeographical significance. Psyche 97:21–29

    Article  Google Scholar 

  • Zherikhin VV (2003) Insect trace fossils, their diversity, classification and scientific importance. Acta Zool Cracov 46:59–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Genise, J.F. (2017). Classifications: The Utopia of Classifying the Unclassifiable. In: Ichnoentomology. Topics in Geobiology, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-28210-7_4

Download citation

Publish with us

Policies and ethics