Skip to main content

Paleosol Ichnofacies

  • Chapter
  • First Online:
Ichnoentomology

Part of the book series: Topics in Geobiology ((TGBI,volume 37))

Abstract

The ichnofacies model is the only paradigm that ichnology has by now, which allows for making predictions of which association of trace fossils we may expect in a given paleoenvironment from any part of the world. Originally the concept of ichnofacies was proposed mainly for the marine realm. Different ichnofacies were recognized for marine deposits, whereas the continental ones were grouped in a single Scoyenia Ichnofacies. Later, the ichnofacies model was improved by redefining this ichnofacies, by defining new ichnofacies for the continental realm and by improving their paleoenvironmental significance. There are six ichnofacies related to paleosols, which can be included in an evolutionary scenario. The rhizolith ichnofacies is an informal one defined to comprise associations composed only of plant trace fossils, mostly rhizoliths. It is recorded since the Paleozoic. The Scoyenia Ichnofacies, also recorded since the Paleozoic, dominated by meniscate trace fossils, trackways, trails, and vertebrate tracks indicates deposits slightly submerged and periodically exposed to air. Subaerial exposition is short precluding insect nesting or pupating. The Camborygma Ichnofacies, with an extended Mesozoic record, is dominated by earthworm (diffuse boxworks, Edaphichnium, Castrichnus) and crayfish (Camborygma, Loloichnus) trace fossils. It indicates paleosols with evidence for a high and fluctuating water table in local wetlands or swamps as a subset of forest, scrub and open herbaceous vegetation. The Celliforma Ichnofacies, with the oldest records during the Late Cretaceous, is the first including insect trace fossils, such as Celliforma, Rebuffoichnus, Fictovichnus, and rhizoliths. It is well represented in Cenozoic localities showing carbonate rich paleosols. It indicates scrubs and woodlands from arid to semiarid climates and palustrine environments, in all cases with large patches of bare soil. The Coprinisphaera Ichnofacies arose along with open habitats dominated by low vegetation, mostly grasses during the Paleogene. It is dominated by Coprinisphaera, Celliforma, Teisseirei, Feoichnus, Monesichnus, Palmiraichnus and other insect traces, rhizoliths and vertebrate burrows. The Termitichnus Ichnofacies has very low recurrency, is dominated by nests of social insects, Termitichnus, Krausichnus, Vondrichnus, Fleaglellius and rhizoliths. It indicates closed forest environments.

Dedicated to Dolf SeilacherQuizas porque mi niñez sigue jugando en tu playa…….(Joan Manuel Serrat 1972, Mediterraneo)

He could not see the green of the shore now but only the tops of the blue hills that showed white as though they were snow-capped and the clouds that looked like high snow mountains above them. The sea was very dark and the light made prisms in the water. The myriad flecks of the plankton were annulled now by the high sun and it was only the great deep prisms in the blue water that the old man saw now with his lines going straight down into the water that was a mile deep.(Ernest Hemingway 1952, The Old Man and the Sea)

De alguna manera, es como si toda la teorĂ­a (icnolĂłgica) se hubiera desarrollado desde un bote anclado a cierta distancia de la costa, en el que un observador cada vez que elaboraba una clasificaciĂłn, imaginaba el continente como algo homogeneo e incluĂ­a todas las trazas terrestres en un solo item, o directamente las ignoraba(Jorge Genise, 2000, Nidos fĂłsiles de insectos en paleosuelos)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Zarza AM, Genise JF, Cabrera MC, Mangas J, MartĂ­n-PĂ©rez A, Valdeolmillos A, Dorado-Valiño M (2008) Megarhizoliths in Pleistocene aeolian deposits from Gran Canaria (Spain): ichnological and palaeoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 265:39–51

    Article  Google Scholar 

  • Alonso-Zarza AM, Genise JF, Verde M (2011) Sedimentology, diagenesis and ichnology of Cretaceous and Palaeogene calcretes and palustrine carbonates from Uruguay. Sediment Geol 236:45–61

    Article  Google Scholar 

  • Archibald JD, Bryant LJ (1990) Differential cretaceous/tertiary extinctions of nonmarine vertebrates; evidence from northeastern Montana. Geol Soc Am Spec Pap 247:549–562

    Google Scholar 

  • Bedatou E, Melchor RN, Bellosi E, Genise JF (2008) Crayfish burrows from Late Jurassic-Late Cretaceous continental deposits of Patagonia: Argentina. Their palaeoecological, palaeoclimatic and palaeobiogeographical significance. Palaeogeogr Palaeoclimatol Palaeoecol 257:169–184

    Article  Google Scholar 

  • Bellosi ES, González M (2010) Paleosols of the middle Cenozoic Sarmiento Formation, central Patagonia. In: Madden R, Carlini A, Vucetich M, Kay R (eds) The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 293–305

    Google Scholar 

  • Bellosi ES, Genise JF, González M (2004) Origen y desmantelamiento de lateritas paleĂłgenas del sudoeste del Uruguay (FormaciĂłn Asencio). Rev Mus Argent Cienc Nat 6:25–40

    Google Scholar 

  • Bellosi ES, Laza JH, Sánchez MV, Genise JF (2010) Ichnofacial analysis of the Sarmiento Formation (Middle Eocene-Lower Miocene) at Gran Barranca, Central Patagonia. In: Madden R, Carlini A, Vucetich M, Kay R (eds) The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 306–316

    Google Scholar 

  • BĂ©thoux O (2008) The earliest beetle identified. J Paleontol 83:931–937

    Article  Google Scholar 

  • Bordy EM, Bumby AJ, Catuneanu O, Eriksson PG (2004) Advanced Early Jurassic termite (Insecta: Isoptera) nests: evidence from the Clarens formation in the Tuli Basin, Southern Africa. Palaios 19:68–78

    Article  Google Scholar 

  • Bown TM, Kraus MJ (1983) Ichnofossils of the alluvial Willwood Formation (Lower Eocene), Bighorn Basin, Northwestern Wyoming, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 43:95–128

    Article  Google Scholar 

  • Bown TM, Kraus MJ (1987) Integration of channel and flood plain suites in aggrading fluvial systems 1. Developmental sequence and lateral relations of lower Eocene alluvial palaeosols, Willwood Formation, Bighorn Basin, Wyoming. J Sediment Petrol 57:587–601

    Google Scholar 

  • Bown TM, Hasiotis ST, Genise JF, Maldonado F, Brouwers EM (1997) Trace fossils of Hymenoptera and other insects and paleoenvironments of the Claron Formation (Paleocene and Eocene), Southwestern Utah. U.S. Geol Surv Bull 2153:42–58

    Google Scholar 

  • Bromley RG, Buatois LA, Genise JF, Labandeira CC, Mángano MG, Melchor RN, Schlirf M, Uchman A (2007) Comments on the paper “Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses” by Stephen T. Hasiotis. Sediment Geol 200:141–150

    Article  Google Scholar 

  • Buatois LA, Mángano MG (1995) The paleonvironmental and paleoecological significance of the lacustrine Mermia ichnofacies: an archetypical subaqueous nonmarine trace fossil assemblage. Ichnos 4:151–161

    Article  Google Scholar 

  • Buatois LA, Mángano MG (2011) Ichnology. Organism-substrate interactions in space and time. Cambridge University Press, New York

    Book  Google Scholar 

  • Buckup L (2003) Familia Parastacidae. In: Melo GS (ed) Manual de identificação dos Crustacea Decapoda de água doce do Brasil. Loyola, SĂŁo Paulo, pp 317–398

    Google Scholar 

  • Cabrera A (1971) FitogeografĂ­a de la RepĂşblica Argentina. Bol Soc Argent Bot 14:1–42

    Google Scholar 

  • Chin K, Pearson D, Ekdale AA (2013) Fossil worm burrows reveal very early terrestrial animal activity and shed light on trophic resources after the end-Cretaceous mass extinction. PLoS One 8:e70920

    Article  CAS  Google Scholar 

  • Darlington JPEC (2005) Distinctive fossilised termite nests at Laetoli, Tanzania. Insect Soc 52:408–409

    Article  Google Scholar 

  • Darlington JPEC (2011) Trace fossils interpreted in relation to the extant termite fauna at Laetoli, Tanzania. In: Harrison T (ed) Palaentology and geology of Laetoli: human evolution in context, vol 2, Fossil hominins and the associated fauna. Springer, Dordrecht, pp 555–565

    Chapter  Google Scholar 

  • Dunagan SP, Driese SG (1999) Control of terrestrial stabilization on Late Devonian palustrine carbonate deposition, Catskill Magnafacies, New York, U.S.A. J Sediment Res 69:772–783

    Article  CAS  Google Scholar 

  • Dunn RE, Strömberg CAE, Madden RH, Kohn MJ, Carlini AA (2015) Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science 347:258–261

    Article  CAS  Google Scholar 

  • Duringer P, Schuster M, Genise JF, Likius A, Mackaye H, Vignaud P, Brunet M (2006) The first fossil fungus gardens of Isoptera: oldest evidence of symbiotic termite fungiculture (Miocene, Chad basin). Naturwissenschaften 93:610–615

    Article  CAS  Google Scholar 

  • Duringer P, Schuster M, Genise JF, Mackaye HT, Vignaud P, Brunet M (2007) New termite trace fossils: Galleries, nests and fungus combs from the Chad basin of Africa (Upper Miocene-Lower Pliocene). Palaeogeogr Palaeoclimatol Palaeoecol 251:323–353

    Article  Google Scholar 

  • Elliott DK, Nations JD (1998) Bee burrows in the Late Cretaceous (Late Cenomanian) Dakota Formation, northeastern Arizona. Ichnos 5:243–253

    Article  Google Scholar 

  • Engel MS (2001) A monograph of the Baltic bees and evolution of the Apoidea (Hymenoptera). Bull Am Mus Nat Hist 259:1–192

    Article  Google Scholar 

  • Frey RW, Pemberton SG, Fagerstrom JA (1984b) Morphological, ethological and environmental significance of the ichnogenera Scoyenia and Ancorichnus. J Paleontol 58:511–528

    Google Scholar 

  • Genise JF (2000) The ichnofamily Celliformidae for Celliforma and allied ichnogenera. Ichnos 7:267–282

    Article  Google Scholar 

  • Genise JF, Bown TM (1994a) New Miocene scarabeid and hymenopterous nests and Early Miocene (Santacrucian) paleoenvironments, Patagonian Argentina. Ichnos 3:107–117

    Article  Google Scholar 

  • Genise JF, Bown TM (1994b) New trace fossils of termites (Insecta: Isoptera) from the Late Eocene-Early Miocene of Egypt, and the reconstruction of ancient isopteran social behavior. Ichnos 3:155–183

    Article  Google Scholar 

  • Genise JF, Bown TM (1996) Uruguay Roselli 1938 and Rosellichnus, n. ichnogenus: two ichnogenera for cluster of fossil bee cells. Ichnos 4:199–217

    Article  Google Scholar 

  • Genise JF, Hazeldine PL (1998a) 3D-reconstruction of insect trace fossils: Elipsoideichnus meyeri Roselli. Ichnos 5:167–175

    Article  Google Scholar 

  • Genise JF, Hazeldine PL (1998b) The ichnogenus Palmiraichnus Roselli for fossil bee cells. Ichnos 6:151–166

    Article  Google Scholar 

  • Genise JF, Laza JH (1998) Monesichnus ameghinoi Roselli: a complex insect trace fossil produced by two distinct trace makers. Ichnos 5:213–223

    Article  Google Scholar 

  • Genise JF, Sarzetti LC (2011) Fossil cocoons associated with a dinosaur egg from Patagonia, Argentina. Palaeontology 54:815–826

    Article  Google Scholar 

  • Genise JF, Verde M (2000) Corimbatichnus fernandezi: a cluster of fossil bee cells from the Late Cretaceous-Early Tertiary of Uruguay. Ichnos 7:115–125

    Article  Google Scholar 

  • Genise JF, Mángano MG, Buatois LA, Laza JH, Verde M (2000) Insect trace fossil associations in paleosols: the Coprinisphaera ichnofacies. Palaios 15:49–64

    Article  Google Scholar 

  • Genise JF, Cladera G, Tancoff S (2001) La presencia de Eatonichnus claronensis en el Paleoceno del Chubut (Argentina). In: ResĂşmenes de la IV reuniĂłn argentina de icnologĂ­a y II reuniĂłn de icnologĂ­a del Mercosur, Tucumán, p 45

    Google Scholar 

  • Genise JF, Laza JH, Fernández W, Frogoni J (2002a) Cámaras pupales fĂłsiles de coleĂłpteros: el icnogĂ©nero Rebuffoichnus Roselli. Rev Mus Argent Cienc Nat 4:159–165

    Article  Google Scholar 

  • Genise JF, Sciutto JC, Laza JH, González MG, Bellosi ES (2002b) Fossil bee nests, coleopteran pupal chambers and tuffaceous paleosols from the Late Cretaceous Laguna Palacios Formation, Central Patagonia (Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 177:215–235

    Article  Google Scholar 

  • Genise JF, Bellosi ES, González MG (2004) An approach to the description and interpretation of ichnofabrics in palaeosols. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc Lond Spec Publ 228:355–382

    Google Scholar 

  • Genise JF, Bellosi ES, Melchor RN, Cosarinsky MI (2005) Comment—advanced Early Jurassic Termite (Insecta: Isoptera) nests: evidence from the Clarens Formation in the Tuli Basin, Southern Africa (Bordy et al., 2004). Palaios 20:303–308

    Article  Google Scholar 

  • Genise JF, Melchor RN, Bellosi ES, González MG, Krause JM (2007) New insect pupation chambers (Pupichnia) from the Upper Cretaceous of Patagonia, Argentina. Cretac Res 28:545–559

    Article  Google Scholar 

  • Genise JF, Bedatou E, Melchor RN (2008a) Terrestrial crustacean breeding trace fossils from the Cretaceous of Patagonia (Argentina): palaeobiological and evolutionary significance. Palaeogeogr Palaeoclimatol Palaeoecol 264:128–139

    Article  Google Scholar 

  • Genise JF, Melchor RN, Bellosi ES, Sánchez MV, Krause JM, Sarzetti LC, Verde M, Bedatou E (2008b) Evolution of Mesozoic-Cenozoic terrestrial ichnofaunas from Southern South America. In: Abstracts of the second international congress on ichnology, Cracow, p 41

    Google Scholar 

  • Genise JF, Alonso-Zarza AM, Krause JM, Sánchez MV, Sarzetti LC, Farina JL, González MG, Cosarinsky M, Bellosi ES (2010a) Rhizolith balls from the Lower Cretaceous of Patagonia: just roots or the oldest evidence of insect agriculture? Palaeogeogr Palaeoclimatol Palaeoecol 287:128–142

    Article  Google Scholar 

  • Genise JF, Melchor RN, Bellosi ES, Verde M (2010) Invertebrate and vertebrate trace fossils in carbonates. In: Alonso-Zarza AM, Tanner L (eds) Carbonates in continental settings. developments in sedimentology, vol 61. Elsevier, Amsterdam, pp 319–369

    Google Scholar 

  • Genise JF, Alonso-Zarza AM, Verde M, Melendez A (2013a) Insect trace fossils in aeolian deposits and calcretes from the Canary Islands: their ichnotaxonomy, producers, and palaeoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 377:110–124

    Article  Google Scholar 

  • Genise JF, Farina JL, Verde M (2013c) Teisseirei barattinia Roselli 1939: the first sphinx moth trace fossil from palaeosols and its distinct type of wall. Lethaia 46:480–489

    Google Scholar 

  • Genise JF, Melchor RN, Sánchez MV, González MG (2013e) Attaichnus kuenzelii revisited: a Miocene record of fungus-growing ants from Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 386:349–363

    Article  Google Scholar 

  • Genise JF, Bedatou E, Bellosi ES, Sarzetti LC, Sánchez MV, Krause JM (2016) The Phanerozoic four revolutions and evolution of paleosol ichnofacies. In: Buatois LA, Mángano MG (eds) The trace fossil record of major evolutionary events. Topics in geobiology. Springer, New York

    Google Scholar 

  • González MG (1999) Los paleosuelos de la FormaciĂłn Laguna Palacios (Cretácico Superior) de Patagonia y la FormaciĂłn Asencio (Cretácico Superior - Terciario Inferior) de Uruguay. In: Boletim do 5° simposio sobre o Cretáceo do Brasil, San Pablo, pp 65–70

    Google Scholar 

  • Graminha C, Melfi AJ (2001) Contribuição dos cupins na formação de solos tropicais: estudo de perfis de alteração basalto-latossolo no estado de SĂŁo Paulo. Acta Geol Leopold 24:373–385

    Google Scholar 

  • Grangeiro ME, Netto RG, Genise JF, Gibert JM, Tognoli FMW (2003) Pleistocene insect trace fossils from the coastal plain of Rio Grande do Sul state, Brazil. In: Abstracts of the 3rd latinoamerican congress of sedimentology, BelĂ©m, pp 174–175

    Google Scholar 

  • Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York

    Google Scholar 

  • Grow L (1981) Burrowing behaviour in the crayfish Cambarus diogenes diogenes Girard. Anim Behav 29:351–356

    Article  Google Scholar 

  • Hasiotis ST (2000) The invertebrate invasion and evolution of Mesozoic soil ecosystems: the ichnofossil record of ecological innovations. In: Gastaldo RA, DiMichele WA (eds) Phanerozoic terrestrial ecosystems. Paleontol Soc Pap 6:141–169

    Google Scholar 

  • Hasiotis ST (2003) Complex ichnofossils of solitary to social soil organisms: understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 192:259–320

    Article  Google Scholar 

  • Hasiotis ST (2004) Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sediment Geol 167:177–268

    Article  Google Scholar 

  • Hasiotis ST, Bown TM (1996) A short note about crayfish burrows from the Paleocene-Eocene Claron Formation, southwestern Utah, USA. Freshwater Crayfish 11:121–129

    Google Scholar 

  • Hasiotis ST, Honey JG (2000) Paleohydrologic and stratigraphic significance of crayfish burrows in continental deposits: examples from several Paleocene Laramide Basins in the Rocky Mountains. J Sediment Res 70:127–139

    Article  CAS  Google Scholar 

  • Hasiotis ST, Mitchell CE (1993) A comparison of crayfish burrow morphologies: triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos 2:291–314

    Article  Google Scholar 

  • Hasiotis ST, Aslan A, Bown TM (1993a) Origin, architecture, and paleoecology of the Early Eocene continental ichnofossil Scaphichnium hamatum, integration of ichnology and paleopedology. Ichnos 3:1–9

    Article  Google Scholar 

  • Hembree DI (2009) Neoichnology of burrowing millipedes: linking modern burrow morphology, organism behavior, and sediment properties to interpret continental ichnofossils. Palaios 24:425–439

    Article  Google Scholar 

  • Hillier RD, Edwards D, Morrissey LB (2008) Sedimentological evidence for rooting structures in the Early Devonian Anglo-Welsh Basin (UK), with speculation on their producers. Palaeogeogr Palaeoclimatol Palaeoecol 270:366–380

    Article  Google Scholar 

  • Huner JV, Barr JE (1991) Red swamp crayfish: biology and exploitation. Louisiana State University, Baton Rouge

    Google Scholar 

  • Johnston PA, Eberth DA, Anderson PK (1996) Alleged vertebrate eggs from Upper Cretaceous redbeds, Gobi Desert, are fossil insect (Coleoptera) pupal chambers: Fictovichnus new ichnogenus. Can J Earth Sci 33:511–525

    Article  Google Scholar 

  • Jordan F, Babbitt KJ, McIvor CC, Miller SJ (2000) Contrasting patterns of habitat use by prawns and crayfish in a headwater marsh of the St. Johns River, Florida. J Crustac Biol 20:769–776

    Article  Google Scholar 

  • Knaust D, Bromley RG (2012) Trace fossils as indicators of sedimentary environments, vol 64, Developments in sedimentology. Elsevier, Amsterdam

    Google Scholar 

  • Krause JM, Genise JF (2004) Chubutolithes Ihering en BahĂ­a Solano, Comodoro Rivadavia, Chubut, Argentina. Consideraciones sedimentolĂłgicas e icnolĂłgicas. ResĂşmenes de la X reuniĂłn argentina de sedimentologĂ­a, San Luis, pp 84–85

    Google Scholar 

  • Krause JM, Bellosi ES, Genise JF (2007) EvoluciĂłn de la icnofauna terrestre de la Patagonia Central II. El Grupo RĂ­o Chico: desde el K-T hasta la explosiĂłn del Eoceno Medio. ResĂşmenes de la V reuniĂłn argentina de icnologĂ­a y III reuniĂłn de icnologĂ­a del Mercosur, Ushuaia, p 38

    Google Scholar 

  • Krause JM, Bown TM, Bellosi ES, Genise JF (2008) Trace fossils of cicadas in the Cenozoic of Central Patagonia, Argentina. Palaeontology 51:405–418

    Article  Google Scholar 

  • Krell FT (2007) Catalogue of fossil Scarabaeoidea (Coleoptera, Polyphaga) of the Mesozoic and Tertiary. Denver Mus Nat Sci Tech Rep 2007–8:1–79

    Google Scholar 

  • Krell FT, Schawaller W (2011) Beetles (Insecta: Coleoptera). In: Harrison T (ed) Paleontology and geology of Laetoli: Human evolution in context. Springer, Berlin, pp 535–548

    Chapter  Google Scholar 

  • Labandeira C (2011) Evidence for an earliest Late Carboniferous divergence time and the early larval ecology and diversification of major Holometabola lineages. Entomol Am 117:9–21

    Google Scholar 

  • Lake PS, Newcombe KJ (1975) Observations on the ecology of the crayfish Parastacoides tasmanicus (Decapoda: Parastacidae) from South-Western Tasmania. Aust Zool 18:197–214

    Google Scholar 

  • Longrich NR, Bhullar B-AS, Gauthier JA (2012) Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. Proc Natl Acad Sci 109:21396–21401

    Article  CAS  Google Scholar 

  • Lucas SG, Minter NJ, Hunt AP (2010) Re-evaluation of alleged bees’ nests from the Upper Triassic of Arizona. Palaeogeogr Palaeoclimatol Palaeoecol 286:194–201

    Article  Google Scholar 

  • Mack GH, Leeder M, Perez-Arlucea M, Bailey BDJ (2003) Early Permian silt-bed fluvial sedimentation in the Orogrande Basin of the Ancestral Rocky Mountains, New Mexico, USA. Sediment Geol 160:159–178

    Article  CAS  Google Scholar 

  • Macleod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffery C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997) The Cretaceous-Tertiary biotic transition. J Geol Soc Lond 154:265–292

    Article  Google Scholar 

  • Martin AJ, Varricchio DJ (2011) Paleoecological utility of insect trace fossils in dinosaur nesting sites of the two medicine formation (Campanian), Choteau, Montana. Hist Biol 23:15–25

    Article  Google Scholar 

  • Melchor RN, Genise JF, Miquel SE (2002) Ichnology, sedimentology and paleontology of Eocene calcareous paleosols from a palustrine sequence, Argentina. Palaios 17:16–35

    Article  Google Scholar 

  • Melchor RN, Genise JF, Buatois LA, Umazano AM (2012a) Fluvial environments. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in sedimentology. Elsevier, Amsterdam, pp 329–378

    Chapter  Google Scholar 

  • Michener CD (2007) The bees of the world. John Hopkins University Press, Baltimore

    Google Scholar 

  • MikĂşlaš R, Genise JF (2003) Traces within traces: holes, pits and galleries in walls and filling of insect trace fossils in paleosols. Geol Acta 1:339–348

    Google Scholar 

  • Morrissey LB, Braddy SJ (2004) Terrestrial trace fossils from the Lower Old Red Sandstone, southwest Wales. Geol J 39:315–336

    Article  Google Scholar 

  • Morrissey LB, Hillier RD, Marriott SB (2012) Late Silurian and Early Devonian terrestrialisation: ichnological insights from the Lower Old Red Sandstone of the Anglo-Welsh Basin, UK. Palaeogeogr Palaeoclimatol Palaeoecol 337–338:194–215

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Nel A, Roques P, Nel P, Prokop J, Steyer JS (2007) The earliest holometabolous insect from the Carboniferous: a “crucial” innovation with delayed success (Insecta, Protomeropina, Protomeropidae). Ann Soc Entomol Fr 43:349–355

    Google Scholar 

  • Noro CK (2007) A historia natural de Parastacus defossus Faxon, 1898. Um lagostin fossorial de Brasil meridional (Crustacea, Decapoda, Parastacidae). Instituto de Biociencias. Porto Alegre, Universidade Federal do Rio Grande do Sul. PhD Thesis.

    Google Scholar 

  • O’Neill KM (2001) Solitary wasps: behavior and natural history. Cornell University Press, Ithaca

    Google Scholar 

  • Retallack GJ (1976) Triassic palaeosols in the Upper Narrabeen Group of New South Wales. Part I: Features of the palaeosols. J Geol Soc Aust 23:383–399

    Article  Google Scholar 

  • Retallack GJ (1984) Trace fossils of burrowing beetles and bees in an Oligocene paleosol, Badlands National Park, South Dakota. J Paleontol 58:571–592

    Google Scholar 

  • Retallack GJ (1999) Carboniferous fossil plants and soils of an early tundra ecosystem. Palaios 14:324–336

    Article  Google Scholar 

  • Retallack GJ (2001a) Scoyenia burrows from Ordovician palaeosols of the Juniata Formation in Pennsylvania. Palaeontology 44:209–235

    Article  Google Scholar 

  • Retallack GJ (2001b) Soils of the past. An introduction to paleopedology. Blackwell, Oxford

    Google Scholar 

  • Richardson AMM, Wong V (1995) The effect of a burrowing crayfish, Parastacoides sp., on the vegetation of Tasmanian wet Heathlands. Freshwater Crayfish 10:174–182

    Google Scholar 

  • Ritchie JM (1987) Trace fossils of burrowing Hymenoptera from Laetoli. In: Leakey MD, Harris JM (eds) Laetoli, a Pliocene site in Northern Tanzania. Oxford Science, New York, pp 433–438

    Google Scholar 

  • Roberts EM, Tapanila L (2006) A new social insect nest from the Upper Cretaceous Kaiparowits formation of southern Utah. J Paleontol 80:768–774

    Article  Google Scholar 

  • Robertson DS, McKenna MC, Toon OB, Hope S, Lillegraven JA (2004) Survival in the first hours of the Cenozoic. Geol Soc Am Bull 116:760–768

    Article  Google Scholar 

  • Rudolph EH (1997) Aspectos fisicoquĂ­micos del habitat y morfologĂ­a de las galerĂ­as del camarĂłn excavador Parastacus nicoleti (Philippi, 1882) (Decapoda: Parastacidae) en el sur de Chile. Gayana 61:97–108

    Google Scholar 

  • Rudolph EH, Crandall KA (2005) A new species of burrowing crayfish, Virilastacus rucapihuelensis (Custacea: Decapoda: Parastacidae), from southern Chile. Proc Biol Soc Wash 118:765–776

    Article  Google Scholar 

  • Sánchez MV, Genise JF (2009) Cleptoparasitism and detritivory in dung beetle fossil brood balls from Patagonia, Argentina. Palaeontology 52:837–848

    Article  Google Scholar 

  • Sánchez MV, González MG, Genise JF (2010a) Phytolith analysis of Coprinisphaera, unlocking dung beetle behaviour, herbivore diets and palaeoenvironments along de Middle Eocene-Early Miocene of Patagonia. Palaeogeogr Palaeoclimatol Palaeoecol 285:224–236

    Article  Google Scholar 

  • Sánchez MV, Krause JM, González MG, Dinghi PA, Genise JF (2010b) The pupation chamber of dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Coleopt Bull 64:277–284

    Article  Google Scholar 

  • Sánchez MV, Laza JH, Bellosi ES, Genise JF (2010c) Ichnostratigraphy of middle Cenozoic Coprinisphaera from central Patagonia: Insights into the evolution of dung beetles, herbivores and grass-dominated habitats. Palaeogeogr Palaeoclimatol Palaeoecol 297:633–648

    Article  Google Scholar 

  • Sands WS (1987) Ichnocoenoses of probable termite origin from Laetoli. In: Leakey MD, Harris JM (eds) Laetoli, a Pliocene Site in Northern Tanzania. Oxford Science, New York, pp 409–433

    Google Scholar 

  • Sarzetti LC, Dinghi P, Genise JF, Bedatou E, Verde M (2014b) Curved fossil bee cells as tools for reconstructing the evolutionary history and geographic palaeodistribution of Diphaglossinae (Apoidea, Colletidae). Palaeontology 57:447–455

    Article  Google Scholar 

  • Seilacher A (1967a) Bathymetry of trace fossils. Mar Geol 5:413–428

    Article  Google Scholar 

  • Sheehan PM, Fastovsky D (1992) Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana. Geology 20:556–560

    Article  Google Scholar 

  • Smith RMH, Mason TR, Ward JD (1993) Flash-flood sediments and ichnofacies of the Late Pleistocene Homeb Silts, Kuiseb River, Namibia. Sediment Geol 85:579–599

    Article  Google Scholar 

  • Smith JJ, Hasiotis ST, Kraus MJ, Woody DT (2008a) Naktodemasis bowni: new ichnogenus and ichnospecies for adhesive meniscate burrows (AMB), paleoenvironmental implications, Paleogene Willwood Formation, Bighorn Basin, Wyoming. J Paleontol 82:267–278

    Article  Google Scholar 

  • Smith JJ, Hasiotis ST, Kraus MJ, Woody DT (2008b) Relationship of floodplain ichnocoenoses to paleopedology, paleohydrology, and paleoclimate in the Willwood Formation, Wyoming, during the Paleocene-Eocene Thermal Maximum. Palaios 23:683–699

    Article  Google Scholar 

  • Smith JJ, Hasiotis ST, Woody DT, Kraus MJ (2008c) Paleoclimatic implications of crayfish-mediated prismatic structures in paleosols of the Paleogene Willwood Formation, Bighorn Basin, Wyoming, USA. J Sediment Res 78:323–334

    Article  Google Scholar 

  • Smith JJ, Hasiotis ST, Kraus MJ, Woody DT (2009) Transient dwarfism of soil fauna during the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci U S A 106:17655–17660

    Article  CAS  Google Scholar 

  • Stromberg CE, Dunn RE, Madden RH, Kohn MJ, Carlini AA (2013) Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nat Commun 4:1478

    Article  CAS  Google Scholar 

  • Suter PJ, Richardson AMM (1977) The biology of two species of Engaeus (Decapoda: Parastacidae) in Tasmania III. Habitat, food, associated fauna and distribution. Aust J Mar Freshwater Res 28:95–103

    Article  Google Scholar 

  • Tapanila L, Roberts EN (2012) The earliest evidence of holometabolan insect pupation in conifer wood. PLoS One 7(2):e31668

    Article  CAS  Google Scholar 

  • Verde M, Genise JF (2014) Elipsoideichnus meyeri Roselli 1987 revisited: a helicoidal fossil bee nest from the Paleogene of Uruguay. Spanish J Paleont 29:25–32

    Google Scholar 

  • Whitmore N, Huryn AD, Arbuckle CJ, Jansma F (2000) Ecology and distribution of the freshwater crayfish Paranephrops zealandicus in Otago. Implications for conservation. Sci Conserv 148:42

    Google Scholar 

  • Wiegmann BM, Trautwein MD, Kim J, Cassel BK, Bertone MA, Winterton SL, Yeates DK (2009) Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 7:1–16

    Article  CAS  Google Scholar 

  • Woodburne M, Goin F, Bond M, Carlini A, Gelfo J, LĂłpez G, Iglesias A, Zimicz A (2014) Paleogene land mammal faunas of South America; a response to global climatic changes and indigenous floral diversity. J Mam Evol 21:1–73

    Article  Google Scholar 

  • Zucol A, Brea M, Bellosi ES (2010) Phytolith analysis in Gran Barranca (central Patagonia): the middle-late Eocene. In: Madden R, Carlini A, Vucetich M, Kay R (eds) The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, New York, pp 317–340

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Genise, J.F. (2017). Paleosol Ichnofacies. In: Ichnoentomology. Topics in Geobiology, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-28210-7_21

Download citation

Publish with us

Policies and ethics