Skip to main content

Trace Fossils as the Physical Evidence of Evolution of Insect Behavior

  • Chapter
  • First Online:
Ichnoentomology

Part of the book series: Topics in Geobiology ((TGBI,volume 37))

  • 1070 Accesses

Abstract

This chapter reconstructs the development of ideas and methodology, from the first insect behaviors described to the incorporation of trace fossils in the study of evolution of behavior. The knowledge on the behavior of extinct species of a given group should necessarily contribute to our understanding of its behavioral evolution. Trace fossils are the physical evidence of such behavioral evolution, the only direct record of past behaviors. Despite this had to wait until recent years to gain some acceptance and to be applied. The concept of evolution of behavior and behavioural homologies went through a long history of controversies, which are briefly reviewed in this chapter. Before the last part of the 80s any mention to evolution of behavior in insects implied series of steps from simple to complex behaviors independent from phylogeny. During the late 80s and early 90s cladistics started its methodological integration with studies on evolution of behavior stressing the necessity to base such studies on known phylogenies. By the same time it was discussed the incorporation of fossils to phylogenies, at once by considering only their morphological information, and later, their stratigraphic information through the dating of nodes or the calibration of molecular clocks. In parallel, the ichnological approach of evolution of behavior was to recognize series of trace fossils that reflected increasing morphological complexity over millions of years. This procedure does not consider possible producers and their phylogenies. More recently were proposed some criteria to recognize monophyletic ichnotaxa. The incorporation of trace fossils in phylogenies was only possible after the integration of cladistics with paleontology. In accordance, one of the uses of trace fossils in evolution of behavior may be to attribute ages to nodes in a cladogram, establishing in turn, minimal ages for the appearance of certain behaviors, or to calibrate molecular clocks. Curved bee cells, dung beetle pupation chambers, and sweat bee nests are used as examples of these last approaches.

Dedicated to Jordi de Gibert

“L’insecte accourt enfin aux vivres. Une pilule est confectionnée suivant toutes les règles. Nul apprentissage : du premier essai, la forme sphérique est obtenue comme ne s’en obtient pas de plus régulière après une longue pratique. Un terrier est creusé pour y consommer en paix le pain qui vient d’être pétri. Ici encore le novice est versé à fond dans son art. L’expérience prolongée n’ajoutera rien à ses talents .” (Henri Fabre 1897, Souvenirs Entomologiques, The sacred scarab)

“There are, to be sure, surprisingly numerous examples of what may be called fossilized behavior: tracks, burrows, wounds and tooth marks , even animals fossilized in the act of parturition or copulation. Nevertheless, I know of only one or two rather unimportant examples in which change, actual evolution, of behavior can be observed in such materials” (George G. Simpson 1958, The study of evolution: methods and present status of theory)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcock J (1984) Animal behavior: an evolutionary approach. Sinauer Associates, Sunderland

    Google Scholar 

  • Alcock J (2003) A textbook history of animal behavior. Anim Behav 65:3–10

    Article  Google Scholar 

  • Almeida E, Pie M, Brady S, Danforth B (2012) Biogeography and diversification of colletid bees (Hymenoptera: Colletidae): emerging patterns from the southern end of the world. J Biogeogr 39:526–544

    Article  Google Scholar 

  • Atz J (1970) The application of the idea of homology to behaviour. In: Aronson LR, Tobach E, Lehrman DS, Rosenblatt JS (eds) Development and evolution of behavior. W.H. Freeman, San Francisco, pp 53–74

    Google Scholar 

  • Baerends GP (1941) Fortplanzungsverhalten und Orientierung der Grabwespe, Ammophila campestris. Tijdschr Entomol 84:68–275

    Google Scholar 

  • Baerends GP (1958) Comparative methods and the concept of homology in the study of behaviour. Arch NĂ©therland Zool 13:401–417

    Google Scholar 

  • Baerends GP (1971) Book reviews. Animal behavior: a synthesis of ethology and comparative psychology by RA Hinde. Anim Behav 19:791–795

    Article  Google Scholar 

  • Baroni Urbani C (1989) Phylogeny and behavioral evolution in ants, with a discussion of the role of behavior in evolutionary processes. Ethol Ecol Evol 1:137–168

    Article  Google Scholar 

  • Beach FA (1955) The descent of instinct. Psychol Rev 62:401–410

    Article  CAS  Google Scholar 

  • Bohart RM, Menke AS (1976) Sphecid wasps of the world. University of California Press, Berkeley

    Google Scholar 

  • Boucot AJ (1990) Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam

    Google Scholar 

  • Brady SG (2011) Effects of fossil calibration uncertainty on divergence dating in ants and bees. Am Entomol 57:56–57

    Article  Google Scholar 

  • Brady SG, Sipes S, Pearson A, Danforth BN (2006b) Recent and simultaneous origins of eusociality in halictid bees. Proc R Soc Lond B 273:1643–1649

    Article  Google Scholar 

  • Brady SG, Larkin L, Danforth BN (2009) Bees, ants and stinging wasps (Aculeata). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 264–269

    Google Scholar 

  • Bromley RG (1990) Trace fossils. Unwin Hyman, London

    Google Scholar 

  • Brooks DR, McLennan DA (1991) Phylogeny, ecology and behavior. The University of Chicago Press, Chicago

    Google Scholar 

  • Cambefort Y (1991) Dung beetles in tropical savannas. In: Hanski I, Cambefort Y (eds) Dung beetle ecology. Princeton University Press, Princeton, pp 157–177

    Google Scholar 

  • Cardinal S, Danforth BN (2013) Bees diversified in the age of eudicots. Proc R Soc B 280:20122686

    Article  Google Scholar 

  • Carpenter JM (1989) Testing scenarios: wasp social behavior. Cladistics 5:131–144

    Article  Google Scholar 

  • Coddington JA (1988) Cladistic tests of adaptational hypothesis. Cladistics 4:3–22

    Article  Google Scholar 

  • Cracraft J, Eldredge N (1979) Phylogenetic analysis and paleontology. Columbia University Press, New York

    Google Scholar 

  • Crimes TP, Fedonkin MA (1994) Evolution and dispersal of deepsea traces. Palaios 9:74–83

    Article  Google Scholar 

  • Danforth B, Brady S, Sipes S, Pearson A (2004) Single-copy nuclear genes recover Cretaceous-age divergences in bees. Syst Biol 55:309–326

    Article  Google Scholar 

  • Darwin E (1794) Zoonomia. J. Johnson, London

    Google Scholar 

  • Darwin C (1859) The origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • Darwin C (1872) The expression of emotions in man and animals. John Murray, London

    Book  Google Scholar 

  • Dobson FS (1985) The use of phylogeny in behavior and ecology. Evolution 39:1384–1388

    Article  Google Scholar 

  • Donoghue MJ (1989) Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution 43:1137–1156

    Article  Google Scholar 

  • Ducke A (1910) Revision des guepes sociales polygames d’Amerique. Ann Mus Hist Nat Hung 8:449–544

    Google Scholar 

  • Eibl-Eibesfeldt I (1974) EtologĂ­a. Ediciones Omega, Barcelona

    Google Scholar 

  • Ekdale AA, Lamond RE (2003) Behavioral cladistics of trace fossils: evolution of derived trace-making skills. Palaeogeogr Palaeoclimatol Palaeoecol 192:335–343

    Article  Google Scholar 

  • Emerson AE (1938) Termite nests—a study of the phylogeny of behavior. Ecol Monogr 8:247–284

    Article  Google Scholar 

  • Evans HE (1953) Comparative ethology and systematics of spider wasps. Syst Zool 2:155–172

    Article  Google Scholar 

  • Evans HE (1966) The comparative ethology and evolution of the sand wasps. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Evans HE, West Eberhard MJ (1970) The wasps. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Fabre JH (1897) Souvenirs Entomologiques. Cinquième sĂ©rie. Librairie Delagrave, Paris

    Google Scholar 

  • Genise JF (1980) Comportamiento de nidificaciĂłn de Prionyx bifoveolatus (Taschenberg) (Hymenoptera, Sphecidae). Physis 39:51–54

    Google Scholar 

  • Genise JF (1986) Estudios etolĂłgicos en Hymenoptera. Rev Latinoam Psicol 18:171–182

    Google Scholar 

  • Genise JF (1989) Las cuevas con Actenomys (Rodentia, Octodontoidea) de la FormaciĂłn Chapadmalal (Plioceno Superior) de Mar delPlata y Miramar (provincia de Buenos Aires). Ameghiniana 26:33–42

    Google Scholar 

  • Genise JF (1993) Las trazas fĂłsiles de insectos en estudios de evoluciĂłn del comportamiento. In: ResĂşmenes de la IV reuniĂłn nacional de ciencias del comportamiento, Mendoza, p 32

    Google Scholar 

  • Genise JF (1995a) Upper Cretaceous trace fossils in permineralized plant remains from Patagonian Argentina. Ichnos 3:287–299

    Article  Google Scholar 

  • Genise JF (1995b) El registro fĂłsil del comportamiento de los insectos. In: ResĂşmenes de la V reuniĂłn nacional de ciencias del comportamiento, Tucumán, p 11

    Google Scholar 

  • Genise JF (2004a) Fungus traces in wood: a rare bioerosional item. In: Abstract book of the first international congress on ichnology, Trelew, Argentina, p 37

    Google Scholar 

  • Genise JF (2005) Comportamiento fĂłsil: trazas de insectos en paleosuelos. In: ResĂşmenes del VI congreso argentino de entomologĂ­a, Tucumán, p 34

    Google Scholar 

  • Genise JF, Bown TM (1990) The constructor of the ichnofossil Chubutolithes. J Paleontol 64:482–483

    Article  Google Scholar 

  • Genise JF, Bown TM (1994a) New Miocene scarabeid and hymenopterous nests and Early Miocene (Santacrucian) paleoenvironments, Patagonian Argentina. Ichnos 3:107–117

    Article  Google Scholar 

  • Genise JF, Bown TM (1994b) New trace fossils of termites (Insecta: Isoptera) from the Late Eocene-Early Miocene of Egypt, and the reconstruction of ancient isopteran social behavior. Ichnos 3:155–183

    Article  Google Scholar 

  • Genise JF, Engel MS (2000) The evolutionary history of sweat bees (Hymenoptera, Halictidae): integration of paleoentomology, paleoichnology, and phylogeny. In: Abstracts of the I international meeting on palaeoarthropodology, Riberao Preto, Brazil, pp 116–117

    Google Scholar 

  • Genise JF, Bellosi ES, González MG (2004) An approach to the description and interpretation of ichnofabrics in palaeosols. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc Lond Spec Publ 228:355–382

    Google Scholar 

  • Gibert JM de (2003) Criterios icnolĂłgicos para reconocer comportamientos homĂłlogos y homoplásicos en el registro fĂłsil. In: Buatois LA, Mángano MG (eds) IcnologĂ­a: hacia una convergencia entre geologĂ­a y biologĂ­a. Publ Esp Asoc Palaeontol Argent 9:9–15

    Google Scholar 

  • Gittleman JL, Decker DM (1994) The phylogeny of behaviour. In: Slater PJ, Halliday TR (eds) Behaviour and evolution. Cambridge University Press, Cambridge, pp 80–105

    Google Scholar 

  • Grantham T (2004) The role of fossils in phylogeny reconstruction: why is it so difficult to integrate paleobiological and neontological evolutionary biology? Biol Phylosophy 19:687–720

    Article  Google Scholar 

  • GrassĂ© P (1984) Termitologia, Tome II. Masson, Paris

    Google Scholar 

  • Greene HW, Burghardt GM (1978) Behavior and phylogeny: constriction in ancient and modern snakes. Science 200:74–77

    Article  CAS  Google Scholar 

  • Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York

    Google Scholar 

  • Halffter G, Edmonds WD (1982) The nesting behaviour of dung beetles. An ecological and evolutive approach. Pub Inst Ecol MĂ©xico 10:1–176

    Google Scholar 

  • Halffter G, Matthews E (1966) The natural history of dung-beetles of the subfamily Scarabaeinae. Folia Entomol Mex 12–14:1–312

    Google Scholar 

  • Hennig W (1950) GrundzĂĽge einer Theorie der phylogenetischen Systematik. Deutscher Zentralverlag, Berlin

    Google Scholar 

  • Hennig W (1968) Elementos de una sistemática filogenĂ©tica. Eudeba, Buenos Aires

    Google Scholar 

  • Huelsenbeck JP, Rannala B (2000) Using stratigraphic information in phylogenetics. In: Wiens JJ (ed) Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington, pp 165–191

    Google Scholar 

  • Kessel EL (1955) Mating activities of balloon flies. Syst Zool 4:97–104

    Article  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    Article  CAS  Google Scholar 

  • Lauder GV (1986) Homology, analogy and the evolution of behavior. In: Nitecki MH, Kitchell JA (eds) Evolution of animal behavior. Palaeontological and field approaches. Oxford University Press, Oxford, pp 9–40

    Google Scholar 

  • Lorenz K (1941) Vergleichende Bewegungstudien an Anatien. J Ornithol 89:194–294

    Google Scholar 

  • Lorenz K (1958) The evolution of behavior. Sci Am 199:67–78

    Article  CAS  Google Scholar 

  • Malyshev SI (1968) Genesis of the hymenoptera and the phases of their evolution. Methuen, London

    Google Scholar 

  • Margoliash E (1963) Primary structure and evolution of cytochrome C. Proc Natl Acad Sci U S A 50:672

    Article  CAS  Google Scholar 

  • Mayr E (1958) Behavior and systematics. In: Roe A, Simpson G (eds) Behavior and evolution. Yale University Press, New Haven, pp 341–366

    Google Scholar 

  • Mayr E (1974) Behavior programs and evolutionary strategies. Am Sci 62:650–659

    CAS  Google Scholar 

  • Michener CD (1953) Life-history studies in insect systematics. Syst Zool 2:112–118

    Article  Google Scholar 

  • Michener CD (1974) The social behavior of bees. The Belknap Press of Harvard University, Cambridge

    Google Scholar 

  • Michener CD (1985) From solitary to eusocial: need there be a series of intervening species? In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Sinauer, Sunderland, pp 293–305

    Google Scholar 

  • Milne MJ, Milne LJ (1939) Evolutionary trends in caddis-worm case construction. Ann Entomol Soc Am 32:533–542

    Article  Google Scholar 

  • Monaghan MT, Inward DJG, Hunt T, Vogler AP (2007) A molecular phylogenetic analysis of the Scarabaeinae (dung beetles). Mol Phyl Evol 45:674–692

    Google Scholar 

  • Packer L (1991) The evolution of social behavior and nest architecture in sweat bees of the subgenus Evylaeus (Halictidae): a phylogenetic approach. Behav Ecol Sociobiol 29:153–160

    Article  Google Scholar 

  • Patterson C (1981) Significance of fossils in determining evolutionary relationships. Annu Rev Ecol Evol Syst 12:195–223

    Article  Google Scholar 

  • Peckham GW, Peckham EG (1898) On the instincts and habitats of solitary wasps. Bull Wisconsin Geol Nat Hist Survey 2:1–145

    Google Scholar 

  • Pernau FA (1716) Unterricht, was mit dem lieblichen Geschöpff denen Vögeln, auch ausser dem Fang, nur durch die ErgrĂĽndung Deren Eigenschafften, und Zahmmachung, oder anderer Abrichtung. Man sich vor Lust und Zeit-Vertreib machen können, NĂĽrnberg

    Google Scholar 

  • Petrunkevich A (1926) The value of instinct as a taxonomic character in spiders. The Biol Bull 50:427–432

    Article  Google Scholar 

  • Pirie MD, Doyle JA (2012) Dating clades with fossils and molecules: the case of Annonaceae. Bot J Linnean Soc 169:84–116

    Article  Google Scholar 

  • Plath OE (1934) Bumblebees and their ways. MacMillian, New York

    Google Scholar 

  • Reaumur RAF (1734–1742) MĂ©moires pour servir a l’histoire des insects. Imprimerie Royale, Paris

    Google Scholar 

  • Remane A (1952) Die Grundlagen des NatĂĽrlichen Systems der Vergleichenden Anatomie un der Phylogenetik. Akad Verlag Geest and Portig K.G, Liepzig

    Google Scholar 

  • Roe A, Simpson GG (1958) Behavior and evolution. Yale University Press, New Haven

    Google Scholar 

  • Rösel von Rosenhof AJ (1746–1761) Insekten Belustigungen I–IV. Fleischmann, NĂĽrnberg

    Google Scholar 

  • Sánchez MV, González MG, Genise JF (2010a) Phytolith analysis of Coprinisphaera, unlocking dung beetle behaviour, herbivore diets and palaeoenvironments along de Middle Eocene-Early Miocene of Patagonia. Palaeogeogr Palaeoclimatol Palaeoecol 285:224–236

    Article  Google Scholar 

  • Sánchez MV, Krause JM, González MG, Dinghi PA, Genise JF (2010b) The pupation chamber of dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Coleopt Bull 64:277–284

    Article  Google Scholar 

  • Sánchez MV, Laza JH, Bellosi ES, Genise JF (2010c) Ichnostratigraphy of middle Cenozoic Coprinisphaera from central Patagonia: Insights into the evolution of dung beetles, herbivores and grass-dominated habitats. Palaeogeogr Palaeoclimatol Palaeoecol 297:633–648

    Article  Google Scholar 

  • Sarzetti LC, Dinghi P, Genise JF, Bedatou E, Verde M (2014b) Curved fossil bee cells as tools for reconstructing the evolutionary history and geographic palaeodistribution of Diphaglossinae (Apoidea, Colletidae). Palaeontology 57:447–455

    Article  Google Scholar 

  • Schmidt RS (1955a) The evolution of nest-building behavior in Apicotermes (Isoptera). Evolution 9:157–181

    Article  Google Scholar 

  • Schmidt RS (1955b) Termite (Apicotermes) nests. Important ethological material. Behavior 8:344–356

    Article  Google Scholar 

  • Scholtz CH, Davis ALV, Kryger U (2009) Evolutionary biology and conservation of dung beetles. Pensoft, Sofia-Moscow

    Google Scholar 

  • Seilacher A (1967b) Fossil behavior. Sci Am 217:72–80

    Article  Google Scholar 

  • Seilacher A (1986) Evolution of behavior as expressed in marine trace fossils. In: Nitecki MH, Kitchell JA (eds) Evolution of animal behavior. Palaeontological and field approaches. Oxford University Press, Oxford, pp 62–87

    Google Scholar 

  • Seilacher A (1994) How valid is Cruziana stratigraphy? Geol Rundsch 83:752–758

    Article  Google Scholar 

  • Simpson GG (1958) The study of evolution: methods and present status of theory. In: Roe A, Simpson GG (eds) Behavior and evolution. Yale University Press, New Haven, pp 1–26

    Google Scholar 

  • Tinbergen N (1951) The study of instinct. Oxford University Press, Oxford

    Google Scholar 

  • Wenzel JW (1992) Behavioral homology and phylogeny. Annu Rev Ecol Syst 23:361–381

    Article  Google Scholar 

  • Wheeler WM (1919) The parasitic Aculeata, a study in evolution. Proc Am Phil Soc 58:1–40

    Google Scholar 

  • Wilson EO (1975) Sociobiology: the new synthesis. Harvard University Press, Cambridge

    Google Scholar 

  • Wilson EO, Taylor RW (1964) A fossil ant colony: new evidence of social antiquity. Psyche 71:93–103

    Article  Google Scholar 

  • Zuckerkandl H, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson G, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Genise, J.F. (2017). Trace Fossils as the Physical Evidence of Evolution of Insect Behavior. In: Ichnoentomology. Topics in Geobiology, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-28210-7_19

Download citation

Publish with us

Policies and ethics