Skip to main content

Insect Trace Fossils in Other Substrates than Paleosols I. Plant Remains

  • Chapter
  • First Online:
Ichnoentomology

Part of the book series: Topics in Geobiology ((TGBI,volume 37))

Abstract

Chapters on insect trace fossils in other substrates are included in the book to provide a very concentrated, but no comprehensive, overview on the whole universe of insect trace fossils, particularly interesting for entomologists. Insect trace fossils are very in common in plant remains. Traces in wood have been described since the second half of the nineteenth century and involve mostly borings of xylophagous groups of insects, such as cerambicids, buprestids, scolytids, carpenter bees and termites. Described ichnogenera, revised herein, include Paleobuprestis, Paleoscolytus, Paleoipidius, Xylokrypta, Anobichnium, Asthenopodichnium, Xylonichnus, Stipitichnus, Cycalichnus, Dekosichnus, Pecinolites and Linckichnus among others. The big picture of insect trace fossils in wood shows a lot of brief descriptions scattered in the literature, a few ichnotaxa described, which in many cases are not compared with each other, and the lack of the standardized set of ichnotaxobases to erect new ichnotaxa. Traces in fossil leaves are more numerous and its ichnotaxonomical scenario very complicated. Mostly, these traces are grouped in functional feeding groups, including excisions (marginal, non-marginal, window and skeletonizations), galls, mines and incisions (piercing and sucking and ovipositions). Extant and fossil examples of these functional groups are briefly revised, mostly dealing with the best defined ichnotaxa representing them. Some of these ichnogenera are: Phagophytichnus, Folifenestra, Paleoovoidus, Paleogallus, and Fenusa among others. Stems, petioles, seeds, pollen, spores and fruits also show insect trace fossils, which are briefly reviewed in this chapter, including ichnogenera such as Carporichnus, Lamniporichnus, Acrobulbillites, and Petiolocecidium among others. Color plates of extant and fossil traces and their producers are provided.

A su manera este libro es muchos libros, pero sobre todo es dos libros El primero se deja leer en la forma corriente, y termina en el capítulo 56… Por consiguiente, el lector prescindirá sin remordimientos de lo que sigue El segundo se deja leer empezando por el capítulo 73 y siguiendo luego en el orden que se indica al pie de cada capítulo. En caso de confusión u olvido, bastará consultar el tablero de dirección (la lista siguiente)

(Julio Cortázar 1963, Rayuela)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel O (1933) Ein fossil Termitennest aus dem Unterpliozän des Wiener Beckens. Verh Zool Bot Ges Wien 83:38–39

    Google Scholar 

  • Adamis-Rodrigues K, Ianuzzi R, Pinto IA (2004) Permian plant-insect interactions from a Gondwana flora of southern Brazil. Fossils Strata 51:106–125

    Google Scholar 

  • Bae YJ, McCafferty WP (1995) Ephemeroptera tusks and their evolution. In: Corkum LD, Abrowski JJH (eds) Current directions in research on ephemeroptera. Canadian Scholar’s Press, Toronto, pp 377–405

    Google Scholar 

  • Banks HP (1981) Peridermal activity (wound repair) in an Early Devonian (Emsian) trimerophyte from Gaspé Peninsula, Canada. Paleobotanist 28–29:20–25

    Google Scholar 

  • Banks HP, Colthart BJ (1993) Plant-animal-fungal interactions in Early Devonian trimerophytes from Gaspé, Canada. Am J Bot 80:992–1001

    Article  Google Scholar 

  • Beck AL, Labandeira CC (1998) Early Permian insect folivory on gigantopterid-dominated riparian flora from north-central Texas. Palaeogeogr Palaeoclimatol Palaeoecol 142:139–173

    Article  Google Scholar 

  • Bernays EA, Chapman RF (1970) Food selection by Chorthippus parallelus (Orthoptera: Acrididae) in the field. J Anim Ecol 39:383–394

    Article  Google Scholar 

  • Bernays EA, Jarzembowski EA, Malcolm SB (1991) Evolution of insect morphology in relation to plants. Philos Trans Biol Sci 333:257–264

    Article  Google Scholar 

  • Bertling M, Braddy S, Bromley RG, Demathieu G, Genise JF, Mikulás R, Nielsen JK, Nielsen KSS, Rindsberg A, Schlirf M, Uchman A (2006) Names for trace fossils: a uniform approach. Lethaia 39:265–286

    Article  Google Scholar 

  • Béthoux O, Galtier J, Nel A (2004) Earliest evidence of insect endophytic oviposition. Palaios 19:408–413

    Article  Google Scholar 

  • Blair KG (1943) Scolytidae (Coleoptera) from the Wealden Formation. Entomol Mon Mag 79:59–60

    Google Scholar 

  • Boucot AJ (1990) Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam

    Google Scholar 

  • Bromley RG (1990) Trace fossils. Unwin Hyman, London

    Google Scholar 

  • Bromley RG, Buatois LA, Genise JF, Labandeira CC, Mángano MG, Melchor RN, Schlirf M, Uchman A (2007) Comments on the paper “Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses” by Stephen T. Hasiotis. Sediment Geol 200:141–150

    Article  Google Scholar 

  • Brongniart C (1876) Perforations observées dans deux morceaux de bois fossile. Ann Soc Entomol Fr 7:215–220

    Google Scholar 

  • Brooks HK (1955) Healed wound and galls on fossil leaves from the Wilcox deposits (Eocene) of Western Tennessee. Psyche 62:1–9

    Article  Google Scholar 

  • Brues C (1936) Evidences of insect activity preserved in fossil wood. J Paleontol 10:637–643

    Google Scholar 

  • Chaloner WG, MacDonald P (1980) Plants invade the land. HMSO, Edimburg

    Google Scholar 

  • Chaloner WG, Scott AC, Stephenson J (1991) Fossil evidence for plant-arthropod interactions in the Palaeozoic and Mesozoic. Philos Trans R Soc Lond B 333:177–186

    Article  Google Scholar 

  • Choong MF (1996) Whats makes a leaf tough and how this affects the pattern of Catanopsis fissa leaf consumption by caterpillars. Funct Ecol 10:668–674

    Article  Google Scholar 

  • Cichan MA, Taylor TN (1982) Wood-borings in Premnoxylon: plant-animal interactions in the Carboniferous. Palaeogeogr Palaeoclimatol Palaeoecol 39:123–127

    Article  Google Scholar 

  • Cockerell TDA (1908) Fossil insect from Florissant, Colorado. Bull Am Mus Nat Hist 24:59–69

    Google Scholar 

  • Colin JP, Néraudeau D, Nel A, Perrichot V (2011) Termite coprolites (Insecta: Isoptera) from the Cretaceous of western France: a palaeoecological insight. Rev Micropaleontol 54:129–139

    Article  Google Scholar 

  • Connor EF, Taverner MP (1997) The evolution and adaptative significance of leaf-mining habit. Oikos 79:6–25

    Article  Google Scholar 

  • Crane PR, Jarzembowski EA (1980) Insect leaf mines from the Palaeocene of southern England. J Nat Hist 14:629–636

    Article  Google Scholar 

  • Diéguez C, Nieves-Aldrey JL, Barrón E (1996) Fossil galls (zoocecids) from the Upper Miocene of La Cerdaña (Lérida, Spain). Rev Paleobot Palynol 94:329–343

    Article  Google Scholar 

  • Dreger-Jauffret F, Shorthouse JD (1992) Diversity of gall-inducing insects and their galls. In: Shorthouse JD, Rohfrtsch O (eds) Biology of insect-induced galls. Oxford University Press, Oxford, pp 9–33

    Google Scholar 

  • Edwards PJ, Wratten SD (1980) Ecology of insect-plant interactions. Edward Arnold, London

    Google Scholar 

  • Engel MS (2001) A monograph of the Baltic bees and evolution of the Apoidea (Hymenoptera). Bull Am Mus Nat Hist 259:1–192

    Article  Google Scholar 

  • Fossa-Mancini E (1941) Los bosques petrificados de la Argentina según E. Riggs y G Wieland. Notas Mus La Plata Geol 6:59–92

    Google Scholar 

  • Francis JE, Harland BM (2006) Termite borings in Early Cretaceous fossil wood, Isle of Wight, UK. Cretac Res 27:773–777

    Article  Google Scholar 

  • Freess WB (1991) Beiträge zur Kenntniss von Fauna and Flora des marinen Mitteloligozäns bei Leipzig. Altenburg Naturwiss Forsch 6:3–74

    Google Scholar 

  • Freidberg A (1984) Gall Tephritidae (Diptera). In: Ananthakrishnan TN (ed) Biology of gall insects. Edward Arnorld, London, pp 129–167

    Google Scholar 

  • Friĉ A (1901) Studien im Gebiete der Böhmischen Kreideformation. Palaentolologische Untersuchungen der einselnen Schichten. Die thierischen Reste der Perucer Schichten. Arch Naturwiss Land Böhmen 9:163–181

    Google Scholar 

  • Gangwere SK (1966) Relationships between the mandibles, feeding behavior, and damages inflicted on plants by the feeding of certain acridids (Orthoptera). Michigan Entomol 1:13–16

    Google Scholar 

  • García Massini JL, Falaschi P, Zamuner AB (2012) Fungal-arthropod-plant interactions from the Jurassic petrified forest Monumento Natural Bosques Petrificados, Patagonia, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 329–330:37–46

    Article  Google Scholar 

  • García-Robledo C, Staines CL (2008) Herbivory in gingers from latest Cretaceous to present: is the ichnogenus Cephaloleichnites (Hispinae, Coleoptera) a rolled-leaf beetle?. J Paleont 82: 1035–1037

    Google Scholar 

  • Geinitz HB (1839) Charakteristik der schichten und Petrefacten des sachsischen Kreidegebirges I. Der Tunnel bei Oberau. Arnoldischen Buchhandlung, Dresden-Leipzig

    Google Scholar 

  • Geinitz HB (1855) Die Versteinerungen der Steinkohlenformation in Sachsen. Verlag W. Engelmann, Leipzig

    Google Scholar 

  • von Gellehorn O (1894) Insektenfrass in der Braunkohle der Mark Brandenburg. Königl Preuss Geol Landensant Bergakademie B 14:49–53

    Google Scholar 

  • Genise JF (1995a) Upper Cretaceous trace fossils in permineralized plant remains from Patagonian Argentina. Ichnos 3:287–299

    Article  Google Scholar 

  • Genise JF (2000) The ichnofamily Celliformidae for Celliforma and allied ichnogenera. Ichnos 7:267–282

    Article  Google Scholar 

  • Genise JF (2004b) Ichnotaxonomy and ichnostratigraphy of chambered trace fossils in palaeosols attributed to coleopterans, termites and ants. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc Lond Spec Publ 228:419–453

    Google Scholar 

  • Genise JF, Hazeldine PL (1995) A new insect trace fossil in Jurassic wood from Patagonian Argentina. Ichnos 4:1–5

    Article  Google Scholar 

  • Genise JF, Garrouste R, Nel P, Grandcolas P, Maurizot P, Cluzel D, Cornette R, Fabre AC, Nel A (2012) Asthenopodichnium in fossil wood: different trace makers as indicators of different terrestrial palaeoenvironments. Palaeogeogr Palaeoclimatol Palaeoecol 365–366:184–191

    Article  Google Scholar 

  • Givulescu R (1981) Pathological elements on fossil leaves from Chiuzbaia (galls, mines, and other insect traces). D S Inst Geol Geof 68:123–133

    Google Scholar 

  • Gnaedinger SC, Adami-Rodrigues K, Gallego OF (2014) Endophytic oviposition on leaves from the Late Triassic of northern Chile: Ichnotaxonomic, palaeobiogeographic and palaeoenvironment considerations. Geobios 47:221–236

    Article  Google Scholar 

  • Gregory I (1968) The fossil woods near Holley in the Sweet Home petrified forest, Linn County, Oregon. State of Oregon Deptartament of Geology and Mineral Industries. Ore Bin 30:57–76

    Google Scholar 

  • Gregory I (1969) Worm-bored poplar from the Eocene of Oregon.State of Oregon Departament of Geology and Mineral Industries. Ore Bin 31:184–185

    Google Scholar 

  • Grimaldi DA (1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann Mo Bot Gard 86:373–406

    Article  Google Scholar 

  • Guo S (1991) A Miocene trace fossil of insect from Shanwang Formation in Linqu, Shandong. Acta Paleontol Sin 30:739–742

    Google Scholar 

  • Handlirsch A (1908) Die fossilen Insekten und die Phylogenie der rezenten Formen, vol 1. Wilhelm Engelmann, Leipizig

    Google Scholar 

  • Hasiotis ST (1997) Abuzz before flowers. Plateau J Museum Northern Arizona 1:20–27

    Google Scholar 

  • Hasiotis ST (2003) Complex ichnofossils of solitary to social soil organisms: understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 192:259–320

    Article  Google Scholar 

  • Hasiotis ST (2004) Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sediment Geol 167:177–268

    Article  Google Scholar 

  • Hasiotis ST, Dubiel RF (1993b) Continental trace fossils of the Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. New Mexico Mus Nat Hist Bull 3:175–178

    Google Scholar 

  • Hasiotis ST, Dubiel RF, Demko TM (1995) Triassic hymenopterous nests: insect eusociality predates angiosperm plants. Geol Soc Am Abstr Prog 27:13

    Google Scholar 

  • Hasiotis ST, Bown TM, Kay PT, Dubiel RF, Demko TM (1996) The ichnofossil record of hymenopteran nesting behavior from Mesozoic and Cenozoic pedogenic and xylic substrates: Example of relative stasis. In: Abstracts of the North America paleontological convention, Washington DC, p 165

    Google Scholar 

  • Hasiotis ST, Dubiel RF, Kay PT, Demko TM, Kowalska K, McDaniel D (1998a) Research update on hymenopteran nests and cocoons, Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. In: Santucci VL, McClelland L (eds) National Park Service paleontological research—technical report NPS/NRGRD/GRDTR-98/01, pp 116–121

    Google Scholar 

  • Heer O (1868) Flora fossilis artica. Die fossile Flora der Polarlander. Schulthess, Zurich

    Book  Google Scholar 

  • Hellmund M, Hellmund W (2002) Erster nachweis von Kleinlibellen-eilogen (Insecta, Zygoptera, Lestidae) in der mitteleozänen braunkohle des ehemaligen tagebaues Mücheln, baufeld neumark-nord (Geiseltal, Sachsen-Anhalt, Deutschland). Hallesches Jahrbuch der Geowissenchaften 24:47–55

    Google Scholar 

  • Hering EM (1930) Eine Agromyziden-mine aus dem Tertiär (Dipt. Agromyz.). Ber Ent Zeit Dtsch Entomol Z 1:63–64

    Google Scholar 

  • Hering EM (1951) Biology of the leaf miners. W. Junk, The Hague

    Book  Google Scholar 

  • Herzer H (1893) A new fungus from the Coal Measures. Am Geol 11:365–366

    Google Scholar 

  • Heyden CH (1856) Reste von Insekten aus der Braunkohle von Salzhausen und Westerburg. Palaentographica 4:198–201

    Google Scholar 

  • Holden AR, Harris JM (2013) Late Pleistocene coleopteran galleries in wood from La Brea tar pits: colonization of Juniper by Phloeosinus Chapuis (Curculionidae: Scolytinae) and Buprestidae. Coleopt Bull 67:155–160

    Article  Google Scholar 

  • Hollick A (1906) Insect borings in Cretaceous Lignite from Kreischerville. Proc Staten Island Assoc Arts Sci 1:23–24

    Google Scholar 

  • Ianuzzi R, Labandeira CC (2008) The oldest record of external foliar feeding and the expansión of insect folivory on land. Ann Entomol Soc Am 101:79–94

    Article  Google Scholar 

  • Jarzembowski EA (1989) Taxonomy of insect leaf mines from the English Palaeocene. Proc Geol Assoc 100:448–449

    Google Scholar 

  • Jarzembowski EA (1990) A boring beetle from the Wealden of The Weald. In: Boucot J (ed) Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam, pp 373–376

    Google Scholar 

  • Jurasky KA (1932) Frassgänge und Koprolithen eines Nagekäfers in liassicher Steinkohle. Deustch Geol Gesell B 84:656–657

    Google Scholar 

  • Kernbach K (1967) Über die bischer im Pliozän von Willershausen gefundenen Schmetterlings Raupenreste. Ber Naturhist Ges Hannover 111:103–108

    Google Scholar 

  • Kevan PG, Chaloner WG, Savile DBO (1975) Interrelationship of early terrestrial arthropod and plants. Palaeontology 18:391–417

    Google Scholar 

  • Kidston R, Lang WH (1921) On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part IV. Restorations of vascular cryptogams, and discussion of their bearing on the general morphology of the Pteridophyta and the origin of the organisation of land-plants. Trans R Soc Edinburgh 52:831–854

    Article  Google Scholar 

  • Kierst J, Wiesner J (1975) Fossile frasspuren an einer Conifere aus dem Dogger in Wolfsburg. Der Aufschluss 26:255–256

    Google Scholar 

  • Kluge NY (2004) The Phylogenetic System of Ephemeroptera. Kluwer, Dordrecht

    Book  Google Scholar 

  • Kozlov MV (1988) Paleontology of lepidopterans and problems in the phylogeny of the order Papilionida. In: Ponomarenko AG (ed) The Mesozoic-Cenozoic crisis in the evolution of insects. Academy of Sciences, Moscow, pp 16–69

    Google Scholar 

  • Krassilov VA (2007) Mines and galls on fossil leaves from the Late Cretaceous (Turonian) of the southern Negev, Israel. Isr J Plant Sci 53:57–66

    Google Scholar 

  • Krassilov VA, Levi Z, Nevo E (2004) Syngenesis and macroevolution in mangrove communities from cretaceous deposits of the Negev desert (Israel). Paleontol Inst Ross Akad Nauk Moscow 6:23–39

    Google Scholar 

  • Krassilov VA, Silantieva N, Lewy Z (2008) Traumas of fossil leaves from the Cretaceous of Israel. In: Krassilov VA, Rasnitsyn A (eds) Plant-arthropod interactions in the early angiosperm history. Pensoft, Sofia-Moscow, pp 9–187

    Chapter  Google Scholar 

  • von Kušta J (1880) Bohrgänge von Insekten in einen verkieselten Araucarite von Bránov bei Pürglitz. Sitzungsber K Böhmisch Gesel Wiss Math Naturwiss Cl 1880:202–203

    Google Scholar 

  • Laass M, Hoff C (2015) The earliest evidence of damselfly-like endophytic oviposition in the fossil record. Lethaia 48:115–124

    Article  Google Scholar 

  • Labandeira CC (1998a) Early history of arthropod and vascular plant associations. Annu Rev Earth Planet Sci 26:329–377

    Article  CAS  Google Scholar 

  • Labandeira CC (2002b) The history of associations between plants and animals. In: Herrera CM, Pellmyr O (eds) Plant-animal interactions: an evolutionary approach. Blackwell Science, London, pp 26–74

    Google Scholar 

  • Labandeira CC (2006a) Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthropod Syst Phylogeny 64:53–94

    Google Scholar 

  • Labandeira CC (2006b) The four phases of plant–arthropod associations in deep time. Geol Acta 4:409–438

    Google Scholar 

  • Labandeira CC (2007) The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Sci 14:259–275

    Article  Google Scholar 

  • Labandeira CC (2012) Evidence for outbreaks from the fossil record of insect herbivory. In: Barbosa P, Letorneau D, Agrawal A (eds) Insect outbreaks revisited. Blackwell, Oxford, pp 269–290

    Google Scholar 

  • Labandeira CC (2013) Deep-time patterns of tissue consumption by terrestrial arthropod herbivores. Naturwissenschaften 100:355–364

    Article  CAS  Google Scholar 

  • Labandeira CC, Allen EG (2007) Minimal insect herbivory for the Lower the Lower Permian Coprolite Bon Bed site of north-central Texas, USA, and comparison to the other Late Paleozoic floras. Palaeogeogr Palaeoclimatol Palaeoecol 247:197–219

    Article  Google Scholar 

  • Labandeira CC, Beall BS (1990) Arthropod terrestriality. In: Culver SJ (ed) Short courses in paleontology, vol 3. University of Tennessee Press, Knoxville, pp 214–216

    Google Scholar 

  • Labandeira CC, Dilcher DL (1993) Insect functional feeding groups from the mid-Cretaceous Dakota Formation of Kansas and Nebraska: evidence for early radiation of herbivores and angiosperms. Geol Soc Am Abstr Programs 25:390

    Google Scholar 

  • Labandeira CC, Phillips TL (1996a) Insect fluid-feeding on Upper Pennsylvanian tree fern (Paleodictyoptera, Marattiales) and the early history of the piercing and sucking functional feeding group. Ann Entomol Soc Am 89:157–183

    Article  Google Scholar 

  • Labandeira CC, Phillips TL (1996b) A carboniferous insect gall: insight into early ecologic history of the holometabola. Proc Natl Acad Sci U S A 93:8470–8474

    Article  CAS  Google Scholar 

  • Labandeira CC, Phillips TL (2002) Stem borings and petiole galls from Pennsylvanian tree ferns of Illinois, USA: implications for the origin of the borer and galler functional-feeding-groups and holometabolous insects. Palaeontographica 264:1–100

    Google Scholar 

  • Labandeira CC, Dilcher DL, Davis DR, Wagner DR (1994) Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. Proc Natl Acad Sci U S A 91:12278–12282

    Article  CAS  Google Scholar 

  • Labandeira CC, Nufio C, Wing S, Davis D (1995) Insect feeding strategies from the Late Cretaceous Big Cedar Ridge flora: comparing the diversity and intensity of Mesozoic herbivory with the present. Geol Soc Am Abst Programs 27:447

    Google Scholar 

  • Labandeira CC, LePage BA, Johnson AH (2001) A Dendroctonus bark engraving (Coleoptera: Scolytidae) from a middle Eocene Larix (Coniferales:Pinaceae): early or delayed colonization? Am J Bot 88:2026–2039

    Article  CAS  Google Scholar 

  • Labandeira CC, Johnson KR, Lang P (2002) Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: major extinction and minimum rebound. In: Hartman JH, Johnson KR, Nichols DJ (eds) The Hell Creek Formation of the northern Great Plains, Boulder, Colorado. Geol Soc Am Spec Paper, vol 361, p 297–327

    Google Scholar 

  • Labandeira CC, Wilf P, Johnson KR, Marsh F (2007) Guide to insect (and other) damage types on compressed plant fossils. Version 3.0. Smithsonian Institution, Washington, DC

    Google Scholar 

  • Lang PJ, Scott AC, Stephenson J (1995) Evidence of plant-arthropod interactions from the Eocene Branksome Sand Formation, Bournemouth, England: introduction and description of leaf mines. Tertiary Res 15:145–174

    Google Scholar 

  • Lesquereux L (1877) A new species of fungus recently discovered in the shales of the Darlington Coal Bed (Lower Productive Coal Measures, Alleghany River Series) at Cannelton, in Beaver County, Pennsylvania. Proc Am Phil Soc 17:173–175

    Google Scholar 

  • Lesquereux L (1892) The flora of the Dakota Group. Monogr U S Geol Surv 17:1–400

    Google Scholar 

  • Linck O (1949) Fossile bohrgänge an einen Keuperholz. Neues Jahr Min Geol Palaeont B 4–6:180–185

    Google Scholar 

  • Lovendal EA (1898) De Danske Barkbiller. Scolytidae et Platypodidae Danicae. Kjobenhavn

    Google Scholar 

  • Lucas SG, Minter NJ, Hunt AP (2010) Re-evaluation of alleged bees’ nests from the Upper Triassic of Arizona. Palaeogeogr Palaeoclimatol Palaeoecol 286:194–201

    Article  Google Scholar 

  • Mani MS (1964) The ecology of plant galls. Junk, The Hague

    Book  Google Scholar 

  • Marty P (1894) De l’a ancienneté de la “Cecidomyia fagi”. Feuilles Jeunes Nat 24:173

    Google Scholar 

  • McLoughlin S (2011) New records of leaf galls and arthropod oviposition scars in Permian–Triassic Gondwanan gymnosperms. Aust J Bot 59:156–169

    Article  Google Scholar 

  • Mikuláš R (1999) Notes to the concept of plant trace fossils related to plant-generated sedimentary structures. Bull Geoci Czech Geol Surv 74:39–42

    Google Scholar 

  • Mikuláš R, Dvořák Z (2002) Borings in xylic tissues of the tree fern Tempskya in the Bohemian Cretaceous Basin, Czech Republic. Zprávy Geol Výzkumech 2002:129–131

    Google Scholar 

  • Mikuláš R, Pek I (1999) Trace fossils of animal plant interactions and “pseudointeractions” from Maletin (Bohemian Cretaceous Basin, Czech Republic). Ichnos 6:219–228

    Article  Google Scholar 

  • Mikuláš R, Dvořák Z, Pek I (1998) Lamniporichnus vulgaris igen. et isp. nov: traces of insect larvae in stone fruits of hackberry (Celtis) from the Miocene and Pleistocene of the Czech Republic. J Czech Geol Soc 43:277–280

    Google Scholar 

  • Möhn E (1960) Eine neue Gallmucke aus der niederrheinischen Braunkohle, Sequoiomyia krauseli n. g. sp. (Diptera, Itonididae). Senckenberg Lethaea 41:513–522

    Google Scholar 

  • Moisan P, Labandeira CC, Matushkina NA, Wappler T, Voigt S, Kerp H (2012) Lycopsid-arthropod associations and odonapteran oviposition on Triassic herbaceous Isoetites. Palaeogeogr Palaeoclimatol Palaeoecol 344–345:6–15

    Article  Google Scholar 

  • Moran K, Hilbert-Wolf HL, Golder K, Malenda HF, Smith CJ, Storm LP, Simpson EL, Wizevich MC, Tindall SE (2010) Attributes of the wood-boring trace fossil Asthenopodichnium in the Late Cretaceous Wahweap Formation, Utah, USA. Palaeogeogr Palaeoclimatol Palaeoecol 297:662–669

    Article  Google Scholar 

  • Nel A (1994) Traces d’activités d’insectes dans de bois et fruits fossiles de la formation de Nkondo (Mio-Pliocène du Rift Occidental, Ouganda). In: Geology and palaeobiology of the Albertine Rift Valley, Uganda-Zaire. Palaeobiology, vol II. CIFEG Occasional Publications, Orleans, France, pp 47–57

    Google Scholar 

  • Patanakamjorn S, Pathak MD (1967) Varietal resistance of rice to the assiatic rice borer, Chilo supressalis (Lepidoptera: Crambidae) and its association with various plant characters. Ann Entomol Soc Am 60:287–292

    Article  Google Scholar 

  • Peña L (1971) Evidencias de insectos en maderas petrificadas halladas en lugares adyacentes al Estrecho de Magallanes. An Mus Hist Nat Valparaíso 4:345–348

    Google Scholar 

  • Petrulevičius JR, Wappler T, Nel A, Just J (2011) The diversity of Odonata and their endophytic ovipositions from the Upper Oligocene fossillagerstätte of Rott (Rhineland, Germany). Zookeys 130:67–89

    Article  Google Scholar 

  • Pieńkowski G, Niedźwiedzki G (2009) Invertebrate trace fossil assemblages from the Lower Hettangian of Sołtyków, Holy Cross Mountains, Poland. Volunina Jurassica 6:109–131

    Google Scholar 

  • Pires EF, Sommer MG (2009) Plant-arthropod interaction in the Early Cretaceous (Berriasian) of the Araripe Basin, Brazil. J South Am Earth Sci 27:50–59

    Article  Google Scholar 

  • Pollard DG (1973) Plant penetration by feeding aphids (Hemiptera, Aphidoidea): a review. Bull Entomol Res 62:631–714

    Article  Google Scholar 

  • Ponzi G (1876) I fossili del Monte Vaticano. Acad Naz Linzei, Atti 3:925–959

    Google Scholar 

  • Prevec R, Labandeira CC, Neveling J, Gastaldo RA, Looy C, Bamford M (2009) Portrait of a Gondwanan ecosystem: A new Late Permian fossil locality from KwaZulu-Natal, South Africa. Rev Palaeobot Palynol 156:454–493

    Article  Google Scholar 

  • Rajchel J, Uchman A (1998) Insect borings in Oligocene wood, Kliwa Sandstones, outer Carpathians, Poland. Ann Soc Geol Polon 68:219–224

    Google Scholar 

  • Raupp MJ (1985) Effects of leaf toughness on mandibular wear of the leaf beetle, Plagiodera versicolora. Ecol Entomol 10:73–79

    Article  Google Scholar 

  • Rittinger PA, Biggs AR, Peirson DR (1987) Histochemistry of lignin and suberin deposition in boundary layers formed after wounding in various plant species and organs. Can J Bot 65:1886–1892

    Article  Google Scholar 

  • Rogers AF (1928) Natural history of the silica in minerals. Am Miner 3:73–92

    Google Scholar 

  • Rogers AF (1938) Fossil termite pellets in opalized wood from Santa María, California. Am J Sci 36:389–392

    Article  Google Scholar 

  • Rohr DM, Boucot AJ, Miller J, Abbott M (1986) Oldest termite nest from the Upper Cretaceous of West Texas. Geology 14:87–88

    Article  Google Scholar 

  • Roselt G (1954) Ein neuer Schachtelhalm aus dem Keuper und Beiträge zur Kenntnis von Neocalamites meriani Brongn. Geologie 3:617–643

    Google Scholar 

  • Ross DA (1932) Practicum der Gallenkunde. Springer, Berlin

    Google Scholar 

  • Rothwell GW, Scott AC (1983) Coprolites within the marattiaceous fern stems (Psaronius magnificus) from the Upper Pennsylvanian of the Appalachian Basin, USA. Palaeogeogr Palaeoclimatol Palaeoecol 41:227–232

    Article  Google Scholar 

  • Rouchy P (1875) Découvertes de perforations de larvas fossiles. Petites Nouvelles Entomol 1:551

    Google Scholar 

  • Rozefelds AC, Sobbe I (1987) Problematic insect leaf mines from the Upper Triassic Ipswich Coal Measures of southeastern Queensland, Australia. Alcheringa 11:51–57

    Article  Google Scholar 

  • Sarzetti LC (2010) Análisis icnológico de las asociaciones planta insecto de la Tafoflora de Río Pichileufú (Eoceno Medio), Río Negro. Tesis Doctoral Universidad Nacional de Tucuman, Argentina

    Google Scholar 

  • Sarzetti LC, Labandeira CC, Genise JF (2008) A leaf-cutter bee trace fossil from the Eocene of Patagonia, Argentina and a review of megachilid (Hymenoptera) ichnology. Palaeontology 51:933–941

    Article  Google Scholar 

  • Sarzetti LC, Labandeira CC, Muzón J, Wilf P, Cúneo R, Johnson K, Genise JF (2009) Odonatan endophytic oviposition from the Eocene of Patagonia: the ichnogenus Paleoovoidus and implications for behavioral stasis. J Paleontol 83:431–447

    Article  Google Scholar 

  • Schenk E (1937) Insektenfrassgänge oder Bohrlöcher von Pholadiden in Ligniten aus dem Braunkohlenflora bei Köln. Neues Jahr Min Geol Palaeont 77:392–401

    Google Scholar 

  • Schlirf M (2006) Linkichnus terebrans new ichnogenus et ichnospecies, an insect boring from the Late Triassic of the Germanic Basin, Southern Germany. Ichnos 13:277–280

    Article  Google Scholar 

  • Schmidt W, Schurmann M, Teichmüller M (1958) Biss-Spuren un Früchten des Miozän-Waldes der niederrheinischen Braunkohlen-Formation. Fortschr Geol Rheinl u Westf 2:563–572

    Google Scholar 

  • Schönfeld E (1965) Die Kieselhölzer as der Braunkohle von Böhlen bei Leipzig. Palaeontographica B 99:1–83

    Google Scholar 

  • Scott AC (1992) Trace-fossils of plant-arthropod interactions. In: Maples CG, West RR (eds) Trace fossils. Short courses in paleontology, vol 5. Paleontological Society, Tennessee, pp 197–223

    Google Scholar 

  • Scott AC, Paterson S (1984) Techniques for study of plant/arthropod interactions in the fossil record. Geobios Mem Spec 8:449–455

    Article  Google Scholar 

  • Scott AC, Taylor TN (1983) Plant/animal interactions during the Upper Carboniferous. Bot Rev 49:259–307

    Article  Google Scholar 

  • Scott AC, Stephenson J, Chaloner WG (1992) Interaction and coevolution of plants an arthropods during the Paleozoic and Mesozoic. Philos Trans R Soc Lond B 335:129–165

    Article  Google Scholar 

  • Scott AC, Stephenson J, Collinson ME (1994) The fossil record of leaves with galls. In: Williams MJA (ed) Plant galls, vol 49, Systematic association special. Clarendon Press, Oxford, pp 447–470

    Google Scholar 

  • Scott AC, Anderson JM, Anderson HM (2004) Evidence of plant–insect interactions in the Upper Triassic Molteno Formation of South Africa. J Geol Soc Lond 161:401–410

    Article  Google Scholar 

  • Scudder SH (1886) Systematic review of fossil insects. Bull U S Geol Surv 5:9–129

    Google Scholar 

  • Scudder SH (1890) The Tertiary insects of North America. Rep U S Geol SurvTerr Hayden 13:1–663

    Google Scholar 

  • Selmeier A (1984) Fossile Bohrgänge von Anobium sp. in einem jungtertiären Lorbeerholz aus Egweil (Südliche Frankenalb.). Archaeopteryx 2:13–29

    Google Scholar 

  • Sharov AG (1973) Morphological feactures and mode of life of the Palaeodictyoptera. Doklady na 24-kh Chteniyakh pamyati N.A. Kholodkovskogo, Leningrad 25:48–63

    Google Scholar 

  • Slater BJ, McLoughlin S, Hilton J (2012) Animal-plant interactions in a Middle Permian permineralised peat of the Bainmedart Coal Measures, Prince Charles Mountains, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 363–364:109–126

    Article  Google Scholar 

  • Stephenson J, Scott AC (1992) The geological history of insect-related plant damage. Terra Nova 4:542–552

    Article  Google Scholar 

  • Straus A (1977) Gallen, Minen und andere Frasspuren im Pliokän von Willershauen am Harz. Verh Botan Vereins Prov Brandenburg 113:43–80

    Google Scholar 

  • Strullu-Derrien C, McLoughlin S, Philippe M, Mørk A, Strullu DG (2012) Arthropod interactions with bennettitalean roots in a Triassic permineralized peat from Hopen, Svalbard Archipelago (Arctic). Palaeogeogr Palaeoclimatol Palaeoecol 348–349:45–58

    Article  Google Scholar 

  • Stull GW, Labandeira CC, Dimichele WA, Chaney DS (2013) The “seeds” on Padgettia readi are insect galls: reassignment of the plant to Odontopteris, the gall to Ovofoligallites n. gen, and the evolutionary implications thereof. J Paleontol 87:217–231

    Article  Google Scholar 

  • Tapanila L, Roberts EN (2012) The earliest evidence of holometabolan insect pupation in conifer wood. PLoS One 7(2):e31668

    Article  CAS  Google Scholar 

  • Taylor TN, Scott AC (1983) Interactions of plants and animals during the Carboniferous. Bioscience 33:488–493

    Article  Google Scholar 

  • Thenius E (1979) Lebensspuren von Ephemeropteren-Larven aus dem Jung-Tertiär des Weiner Beckens. Ann Naturhist Mus Wien 82:177–188

    Google Scholar 

  • Trout MK, Labandeira CC, Chapman RE (2000) A morphometric analysis of insect damage on Neuropteris and implications for Paleozoic herbivory. Geol Soc Am Abstr Programs 32:219–220

    Google Scholar 

  • Uchman A (2011) Recent freshwater wood borings from the Vistula River in Poland. In: Carreiro-Silva M, Ávila SP (eds) 7th international bioerosion workshop. Faial, Azores, pp 18–23

    Google Scholar 

  • Uchman A, Gaigalas A, Melesyte M, Kazakauska V (2007) The trace fossil Asthenopodichnium lithuanicum sp. nov. from Late Neogene brown-coal deposits, Lithuania. Geol Q 51:329–336

    Google Scholar 

  • Van Ameron HWJ (1966) Phagophytichnus ekowski nov ichnogen & ichnosp, eine Missbildung infolge von Insektenfrass, aus dem spanischen Stephanien (Provinz Leon). Leidse Geol Meded 38:181–184

    Google Scholar 

  • Van Ameron HWJ (1973) Gibt es Cecidien im Karbon bei Calamiten und Asterophylliten? In: Compte Rendu de la 7me congrès international de stratigraphie et de géologie du carbonifère, vol 2. pp 63–76

    Google Scholar 

  • Vasilenko DV (2005) Damages on Mesozoic plants from the Transbaikalian locality Chernovskie Kopi. Paleontol J 39:54–59

    Google Scholar 

  • Vasilenko DV (2006) Margin feeding damage on the leaves of Conifers and Ginkgoales from the Mesozoic of Transbaikalia. Paleontol J 40:53–55

    Article  Google Scholar 

  • Vasilenko DV (2007) Feeding damage on upper Permian plants from the Sukhona River. Paleontol J 41:87–90

    Article  Google Scholar 

  • Vasilenko DV (2008) Insect on aquatic leaves Quereuxia from the Upper Cretaceous of the Amur Region. Paleontol J 42:514–521

    Article  Google Scholar 

  • Vasilenko DV (2011) The first record of endophytic insect oviposition from the Tartarian of European Russia. Paleontol J 45:333–334

    Article  Google Scholar 

  • Vialov OC (1975) The fossil traces of nourishment of the insects. Paleontological Collection 12:147–155

    Google Scholar 

  • Waggoner BM (1999) Fossil oak leaf galls from the Stinking Water paleoflora of Oregon (middle Miocene). Paleobios 19:8–14

    Google Scholar 

  • Walker MV (1938) Evidence of Triassic insects in the Petrified Forest National Monument, Arizona. Proc U S Natl Mus 85:137–141

    Article  Google Scholar 

  • Wesenberg-Lund C (1943) Biologie der Süsswasserinsekten. Gyldendalske Boghandel–Nordisk Forlag, Copenhagen

    Book  Google Scholar 

  • Wilf P (2008) Insect damaged fossil leaves record food web response to ancient climate change and extinction. New Phytol 178:486–502

    Article  CAS  Google Scholar 

  • Wilf P, Labandeira CC (1999) Plant-insect associations respond to paleocene-eocene warming. Science 284:2153–2156

    Article  CAS  Google Scholar 

  • Wilf P, Labandeira CC, Kress WJ, Staines CL, Windsor DM, Allen AL, Johnson KR (2000) Timing the radiations of the leaf beetles: hispines on gingers from latest cretaceous to recent. Science 289:291–294

    Article  CAS  Google Scholar 

  • Wilf P, Labandeira CC, Johnson KR, Cúneo RN (2005a) Richness of plant-insect associations in Eocene Patagonia: a legacy for South American biodiversity. Proc Natl Acad Sci U S A 25:8944–8948

    Article  CAS  Google Scholar 

  • Wilf P, Johnson KR, Cúneo RN, Smith ME, Singer BS, Gandolfo MA (2005b) Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. Am Nat 165:643–650

    Article  Google Scholar 

  • William MJA (1994) Plant galls. Organisms, interactions, populations. Syst Asoc Spec Vol 49. Clarendon Press, Oxford

    Google Scholar 

  • Winkler IS, Labandeira CC, Wappler T, Wilf P (2010) Distinguishing Agromyzidae (Diptera) leaf mines in the fossil record: new taxa from the Paleogene of North America and Germany and their evolutionary implications. J Paleontol 84:935–954

    Article  Google Scholar 

  • Wittlake EB (1981) Fossil plant galls. In: Kaiser HE (ed) Neoplasms—comparative pathology of growth in animals, plants, and man. Williams and Wilkins, London, pp 729–731

    Google Scholar 

  • Zherikhin VV (2002a) Insect trace fossils. In: Rasnitsyn AP, Quicke DLJ (eds) History of insects. Kluwer Academic Publishers, Dordrecht, pp 303–324

    Google Scholar 

  • Zherikhin VV (2002b) Ecological history of the terrestrial insects. In: Rasnitsyn AP, Quicke DLJ (eds) History of insects. Kluwer Academic Publishers, Dordrecht, pp 330–338

    Google Scholar 

  • Zherikhin VV (2003) Insect trace fossils, their diversity, classification and scientific importance. Acta Zool Cracov 46:59–66

    Google Scholar 

  • Zhou Z, Zhang B (1989) A sideritic Protocupressinoxylon with insect borings and frass from the Middle Jurassic, Henan, China. Rev Palaeobot Palinology 59:133–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Genise, J.F. (2017). Insect Trace Fossils in Other Substrates than Paleosols I. Plant Remains. In: Ichnoentomology. Topics in Geobiology, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-28210-7_17

Download citation

Publish with us

Policies and ethics