Skip to main content

Envelopes of \(\alpha \)-Sections

  • Conference paper
  • First Online:
Convexity and Discrete Geometry Including Graph Theory

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 148))

  • 924 Accesses

Abstract

Let K be a planar convex body af area |K|, and take \(0<\alpha <1\). An \(\alpha \)-section of K is a line cutting K into two parts, one of which has area \(\alpha |K|\). This article presents a systematic study of the envelope of \(\alpha \)-sections and its dependence on \(\alpha \). Several open questions are asked, one of them in relation to a problem of fair partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact (12) is stated for \(\alpha \) fixed, but its proof uses only (3) and (10)—which can easily be adapted to our situation—and the continuity of the function \(\mathrm{cotan}\).

  2. 2.

    A classical conjecture states that only ellipses have a dual billiard map which is integrable.

References

  1. I. Bárány, A. Hubard, J. Jeronimo, Slicing convex sets and measures by a hyperplane. Discrete Comput. Geom. 39, 67–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Bárány, P. Blagojević, A. Szűcs, Equipartitioning by a convex 3-fan. Adv. Math. 223, 579–593 (2010)

    Google Scholar 

  3. I. Bárány, J. Matoušek, Simultaneous partitions of measures by \(k\)-fans. Discrete Comput. Geom. 25, 317–334 (2001)

    Google Scholar 

  4. S. Bereg, Orthogonal equipartitions. Computat. Geom. Theory Appl. 42, 305–314 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. P.V.M. Blagojević, G.M. Ziegler, Convex equipartitions via equivariant obstruction theory. Israel J. Math. 200, 49–77 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. S.E. Cappell, J.E. Goodman, J. Pach, R. Pollack, M. Sharir, R. Wenger, Common tangents and common transversals. Adv. Math. 106, 198–215 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. M.M. Day, Polygons circumscribed about closed convex curves. Trans. Am. Math. Soc. 62, 315–319 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Dieudonné, Foundations of Modern Analysis (Academic Press, New York, 1969)

    MATH  Google Scholar 

  9. C. Dupin, Applications de Géometrie et de Mécanique, à la Marine, aux Ponts et Chaussées, etc (Bachelier, Paris, 1822)

    Google Scholar 

  10. A. Fruchard, A. Magazinov, Fair partitioning by straight lines, in this volume

    Google Scholar 

  11. D. Fuchs, S. Tabachnikov, Lecture 11: segments of equal area, mathematical omnibus: thirty lectures on classic mathematics, Am. Math. Soc. Ed., Providence, RI, 155–165 (2007)

    Google Scholar 

  12. B. Grünbaum, Continuous families of curves. Can. J. Math. 18, 529–537 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Gutkin, A. Katok, Caustics for inner and outer billiards. Commun. Math. Phys. 173, 101–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. P.C. Hammer, Convex bodies associated with a convex body. Proc. Am. Math. Soc. 2, 781–793 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  15. R.N. Karasev, Equipartition of several measures, 29 November 2010. arXiv:1011.476v2 [math.MG]

  16. R.N. Karasev, A. Hubard, B. Aronov, Convex equipartitions: the spicy chicken theorem. Geom. Dedicata 170, 263–279 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Kincses, The topological type of the \(\alpha \)-sections of convex sets. Adv. Math. 217, 2159–2169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Klee, The critical set of a convex body. Am. J. Math. 75, 178–188 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  19. V.F. Lazutkin, Existence of caustics for the billiard problem in a convex domain (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 37, 186–216 (1973)

    MathSciNet  Google Scholar 

  20. V.V. Menon, A theorem on partitions of mass-distribution. Pac. J. Math. 16, 133–137 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Meyer, S. Reisner, A geometric property of the boundary of symmetric convex bodies and convexity of flotation surfaces. Geom. Dedicata 37, 327–337 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Moser, Stable and random motions in dynamical systems. Ann. Math. Stud. 77, (1973)

    Google Scholar 

  23. B.H. Neumann, On an invariant of plane regions and mass distributions. J. London Math. Soc. 20, 226–237 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Sakai, Balanced convex partitions of measures in \(\mathbb{R}^{2}\). Graphs Comb. 18, 169–192 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Schütt, E. Werner, The convex floating body. Math. Scand. 66, 75–290 (1990)

    MathSciNet  MATH  Google Scholar 

  26. C. Schütt, E. Werner, Homothetic floating bodies. Geom. Dedicata 49, 335–348 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Soberón, Balanced convex partitions of measures in \({\mathbb{R}}^{d}\), 12 May 2011. arXiv:1010.6191v2 [math.MG]

  28. A. Stancu, The floating body problem. Bull. London Math. Soc. 38, 839–846 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Tabachnikov, On the dual billiard problem. Adv. Math. 115, 221–249 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. U. Viet, Umkehrung eines Satzes von H. Brunn über Mittelpunktseibereiche, Math. Phys. Semesterber. 5, 141–142 (1956)

    Google Scholar 

  31. E. Werner, Floating bodies and illumination bodies, in Proceedings of the “Conference Integral Geormetry and Convexity” (World Scientific, Singapore, Wuhan, 2004)

    Google Scholar 

  32. T. Zamfirescu, Sur la réductibilité des corps convexes. Math. Z. 95, 20–33 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Zamfirescu, Spreads. Abh. Math. Sem. Univ. Hamburg 50, 238–253 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Theodor Hangan and Tudor Zamfirescu for fruitful discussions and for having pointed to them several references. They are also indebted to the anonymous referee who drew to their attention the reference [21]. The third author thanks the Universitè de Haute Alsace for a one-month grant and its hospitality, and acknowledges partial support from the Roumanian National Authority for Scientific Research, CNCS-UEFISCDI, grant PN-II-ID-PCE-2011-3-0533.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustin Fruchard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chevallier, N., Fruchard, A., Vîlcu, C. (2016). Envelopes of \(\alpha \)-Sections. In: Adiprasito, K., Bárány, I., Vilcu, C. (eds) Convexity and Discrete Geometry Including Graph Theory. Springer Proceedings in Mathematics & Statistics, vol 148. Springer, Cham. https://doi.org/10.1007/978-3-319-28186-5_17

Download citation

Publish with us

Policies and ethics