Skip to main content

Complex Conference Matrices, Complex Hadamard Matrices and Complex Equiangular Tight Frames

  • Conference paper
  • First Online:
Convexity and Discrete Geometry Including Graph Theory

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 148))

Abstract

In this article we construct new, previously unknown parametric families of complex conference matrices of even orders and of complex Hadamard matrices of square orders and related them to complex equiangular tight frames. It is shown that for any odd integer \(k\ge 3\) such that \(2k=p^{\alpha }+1\), p prime, \(\alpha \) non-negative integer, on the one hand there exists a (2kk) complex equiangular tight frame and for any \(\beta \in \mathbb {N}^{*}\) there exists a \(((2k)^{2^{\beta }},\frac{1}{2}(2k)^{2^{\beta -1}}((2k)^{2^{\beta -1} }\pm 1))\) complex equiangular tight frame depending on one unit complex number, and on the other hand there exist a family of \(((4k)^{2^{\beta }},\frac{1}{2}(4k)^{2^{\beta -1}}((4k)^{2^{\beta -1}}\pm 1))\) complex equiangular tight frames depending on two unit complex numbers.

To T. Zamfirescu on the occasion of his seventieth birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Belevitch, Theory of \(2n\)-terminal networks with applications to conference telephony. Elect. Commun. 27, 231–244 (1950)

    Google Scholar 

  2. B.C. Berndt, R.J. Evans, The determination of Gauss sums. Bul. A.M.S. 5(2), 107–129 (1981)

    Google Scholar 

  3. B.G. Bodmann, H.J. Elwood, Complex equiangular Parseval frames and Seidel matrices containing pth roots of unity. Proc. AMS 138(12), 4387–4404 (2010)

    Google Scholar 

  4. U. Brehm, B. Et-Taoui, Congruence criteria for finite subsets of complex projective and complex hyperbolic spaces. Manuscripta Math. 96, 81–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. A.T. Butson, Generalized Hadamard matrices. Proc. AMS 13, 894–898 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Delsarte, J.M. Goethals, J.J. Seidel, Orthogonal matrices with zero diagonal II. Can. J. Math. XXXIII(5), 816–832 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Dita, Complex Hadamard matrices from Sylvester inverse orthogonal matrices. Roum. J. Phys. 54, N\(^{\circ }\)5-6, 433–440 (2009)

    Google Scholar 

  8. D.M. Duncan, T.R. Hoffman, J.P. Solazzo, Equiangular tight frames and four root Seidel matrices. Linear Algebra Appl. 432, 2816–2823 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Euler, T. Zamfirescu, On planar Toeplitz graphs. Graphs Combinatorics 29, 1311–1327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Et-Taoui, Infinite family of equi-isoclinic planes in Euclidean odd dimensional spaces and of complex conference matrices of odd orders. arXiv:1409.4282v1

  11. B. Et-Taoui, Equiangular lines in \(C^{r}\). Indag. Math. N.S. 11(2), 201–207 (2000)

    Google Scholar 

  12. B. Et-Taoui, Equi-isoclinic planes in Euclidean spaces. Indag. Math. N.S. 17(2), 205–219 (2006)

    Google Scholar 

  13. J.M. Goethals, J.J. Seidel, Orthogonal matrices with zero diagonal. Can. J. Math. 19, 1001–1010 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  14. R.B. Holmes, V.I. Paulsen, Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. P.H.J. Lampio, F. Szöllösi, P.R.J. Ostergard, The quaternary complex Hadamard matrices of orders 10, 12 and 14. Discrete Math. 313, 189–206 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. P.W.H. Lemmens, J.J. Seidel, Equiangular lines. J. Algebra 24, 494–512 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.H. van Lint, J.J. Seidel, Equilateral point sets in elliptic geometry. Indag. Math. N.S. 28, 335–348 (1966)

    Google Scholar 

  18. S. Malik, T. Zamfirescu, Hamiltonian connectedness in directed Toeplitz graphs. Sci. Math. Roumanie (N.S.) 53(101) no. 2, 145–156 (2010)

    Google Scholar 

  19. R. Mathon, Symmetric conference matrices of order \(pq^{2}+1\). Can. J. Math. 30, 321–331 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. R.E.A.C. Paley, On orthogonal matrices. J. Math. Phys. 12, 311–320 (1933)

    Article  MATH  Google Scholar 

  21. D. Raghavarao, Some aspects of weighing designs. Ann. Math. Statist. 31, 878–884 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Seberry, A.L. Whiteman, New Hadamard matrices and conference matrices obtained via Mathon’s construction. Graphs and Combinatorics 4, 355–377 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Szöllösi, Parametrizing complex Hadamard matrices. European J. Comb. 29, 1219–1234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Szöllösi, Complex Hadamard matrices and Equiangular tight frames. Linear Algebra Appl. 438(4), 1962–1967 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Williamson, Hadamard’s determinant theorem and the sum of four squares. Duke Math. J. 11, 65–81 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Zauner, Quantum designs. IJQI 9(1), 445–507 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boumediene Et-Taoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Et-Taoui, B. (2016). Complex Conference Matrices, Complex Hadamard Matrices and Complex Equiangular Tight Frames. In: Adiprasito, K., Bárány, I., Vilcu, C. (eds) Convexity and Discrete Geometry Including Graph Theory. Springer Proceedings in Mathematics & Statistics, vol 148. Springer, Cham. https://doi.org/10.1007/978-3-319-28186-5_16

Download citation

Publish with us

Policies and ethics