Advertisement

Tunable Transmission Line Metamaterials

Chapter
  • 1.2k Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Transmission line metamaterials using the possibility of forward- and backward wave propagation or the independent design of the phase and impedance (Eleftheriades, et al. IEEE Trans Microw Theory Tech, 50:2702–2712, 2002, [1], Iyer, Eleftheriades, 2002 IEEE MTT-S international microwave symposium digest, vol 2, pp 1067–1070, 2002, [2], Caloz, Itoh, 2003 IEEE MTT-S international microwave symposium digest, vol 1, pp 195–198, 2003, [3], Caloz, Itoh, IEEE Trans Antennas Propag 52:1159–1166, 2004, [4], Lai, et al. IEEE Microw 5(3):34–50, 2004, [5]), have a broad range of potential applications.

Keywords

Effective Permittivity Liquid Crystal Molecule Frequency Selective Surface Liquid Crystal Layer Alignment Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Eleftheriades, A. Iyer, P. Kremer, Planar negative refractive index media using periodically l-c loaded transmission lines. IEEE Trans. Microw. Theory Tech. 50, 2702–2712 (2002)CrossRefGoogle Scholar
  2. 2.
    A. Iyer, G. Eleftheriades, Negative refractive index metamaterials supporting 2-d waves, in 2002 IEEE MTT-S International Microwave Symposium Digest, (2002) vol. 2, pp. 1067–1070Google Scholar
  3. 3.
    C. Caloz, T. Itoh, Novel microwave devices and structures based on the transmission line approach of meta-materials, in 2003 IEEE MTT-S International Microwave Symposium Digest (2003) vol. 1, pp. 195–198Google Scholar
  4. 4.
    C. Caloz, T. Itoh, Transmission line approach of left-handed (lh) materials and microstrip implementation of an artificial lh transmission line. IEEE Trans. Antennas Propag. 52, 1159–1166 (2004)CrossRefGoogle Scholar
  5. 5.
    A. Lai, T. Itoh, C. Caloz, Composite right/left-handed transmission line metamaterials. IEEE Microw. 5(3), 34–50 (2004)CrossRefGoogle Scholar
  6. 6.
    M. Gil, J. Bonache, J. Selga, J. García-García, F. Martín, High-pass filters implemented by composite right/left handed (crlh) transmission lines based on complementary split rings resonators (csrrs). PIERS online 3(3), 251–253 (2007)CrossRefGoogle Scholar
  7. 7.
    C. Damm, M. SchüBler, J. Freese, R. Jakoby, Artificial line phase shifter with separately tunable phase and line impedance, in Proceeding of the 36th European Microwave Conference (2006) pp. 423–426Google Scholar
  8. 8.
    A. Giere, C. Damm, P. Scheele, R. Jakoby, Lh phase shifter using ferroelectric varactors, in Proceeding of the IEEE Radio and Wireless Symposium (2006) pp. 403–406Google Scholar
  9. 9.
    C. Caloz, A. Sanada, T. Itoh, A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Trans. Microw. Theory Tech. 52, 980–992 (2004)CrossRefGoogle Scholar
  10. 10.
    L. Liu, C. Caloz, T. Itoh, Electron. Lett. 38(2), 1414–1416 (2002)Google Scholar
  11. 11.
    C. Caloz, T. Itoh, A. Rennings, Crlh metamaterial leaky-wave and resonant antennas. IEEE Antennas Propag. Mag. 50, 25–39 (2008)CrossRefGoogle Scholar
  12. 12.
    D. Jackson, C. Caloz, T. Itoh, Leaky-wave antennas. Proc. IEEE 100, 2194–2206 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Sanada, C. Caloz, T. Itoh, Novel zeroth-order resonance in composite right/left-handed transmission line resonators. Proc. Asia-Pacific Microw. Conf. 3, 1588–1591 (2003)Google Scholar
  14. 14.
    M. SchüBler, C. Damm, J. Freese, R. Jakoby, Realization concepts for compact microstrip antennas with periodically loaded lines, in Proceeding of the IEEE MTT-S International Microwave Symposium Digest ( 2005) pp. 4Google Scholar
  15. 15.
    M. SchüBler, C. Damm, M. Maasch, R. Jakoby, Performance evaluation of left-handed delay lines for rfid backscatter applications, in Proc. IEEE MTT-S International Microwave Symposium Digest (2008) pp. 177–180Google Scholar
  16. 16.
    C. Damm, M. SchüBler, M. Puentes, H. Maune, M. Maasch, R. Jakoby, Artificial transmission lines for high sensitive microwave sensors (2009)Google Scholar
  17. 17.
    C. Damm, M. Maasch, M. SchüBler, R. Jakoby, Double series and double parallel unit cells for transmission line metamaterials. Electron. Lett. 46(2), 112–113 (2010)CrossRefGoogle Scholar
  18. 18.
    C. Caloz, Dual composite right/left-handed (D-CRLH) transmission line metamaterial. IEEE Microw. Wirel. Compon. Lett. 16, 585–587 (2006)CrossRefGoogle Scholar
  19. 19.
    F. Gölden, A. Gäbler, M. Göbel, A. Manabe, S. Müller, R. Jakoby, Tunable liquid crystal phase shifter for microwave frequencies. Electron. Lett. 45, 686–687 (2009)CrossRefGoogle Scholar
  20. 20.
    A. Mössinger, R. Marin, S. Müller, J. Freese, R. Jakoby, Electronically reconfigurable reflectarrays with nematic liquid crystals. Electron. Lett. 42(1), 899–900 (2006)CrossRefGoogle Scholar
  21. 21.
    W. Hu, R. Cahill, J. Encinar, R. Dickie, H. Gamble, V. Fusco, N. Grant, Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal. IEEE Trans. Antennas Propag. 56, 3112–3117 (2008)CrossRefGoogle Scholar
  22. 22.
    W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, S. Rea, Liquid crystal tunable mm wave frequency selective surface. IEEE Microw. Wirel. Compon. Lett. 17, 667–669 (2007)CrossRefGoogle Scholar
  23. 23.
    F. Zhang, G. Houzet, E. Lheurette, D. Lippens, M. Chaubet, X. Zhao, Negative-zero-positive metamaterial with omega-type metal inclusions. J. Appl. Phys. 103(8), 084312 (2008)CrossRefGoogle Scholar
  24. 24.
    F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, D. Lippens, Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal. Appl. Phys. Lett. 97(13) (2010)Google Scholar
  25. 25.
    C. Damm, M. Maasch, R. Gonzalo, R. Jakoby, Tunable composite right/left-handed leaky wave antenna based on a rectangular waveguide using liquid crystals (2010) pp. 13–16Google Scholar
  26. 26.
    M. Roig, M. Maasch, C. Damm, R. Jakoby, Liquid crystal-based tunable crlh-transmission line for leaky wave antenna applications at ka-band. Int. J. Microw. Wirel. Technol. 6(3–4), 325–330 (2014)CrossRefGoogle Scholar
  27. 27.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, International series of monographs on physics (Clarendon Press, Oxford, 1995)Google Scholar
  28. 28.
    P. Collings, M. Hird, Introduction to Liquid Crystals: Chemistry and Physics, Liquid Crystals Book Series (Taylor & Francis, Boca Raton, 1997)CrossRefGoogle Scholar
  29. 29.
    D. Yang, S. Wu, Fundamentals of Liquid Crystal Devices, Wiley Series in Display Technology (Wiley, New York, 2006)CrossRefGoogle Scholar
  30. 30.
    A. Gäbler, F. Gölden, S. Müller, R. Jakoby, Multiphysics simulations for tunability efficiency evaluation of liquid crystal based rf. Frequenz 62(9–10), 240–245 (2008)Google Scholar
  31. 31.
    A. Gäbler, F. Gölden, S. Müller, R. Jakoby, Modeling of electrically tunable transmission line phase shifter based on liquid crystal, in 2008. AP-S 2008. IEEE Antennas and Propagation Society International Symposium (2008) pp. 1–4Google Scholar
  32. 32.
    G. Perez-Palomino, R. Florencio, J. A. Encinar, M. Barba, R. Dickie, R. Cahill, P. Baine, M. Bain, R.R. Boix, Accurate and efficient modeling to calculate the voltage dependence of liquid crystal based reflectarray cells (2014)Google Scholar
  33. 33.
    R. Dudley, M. Naftaly, Thz optical constants of liquid crystals bl037 and gt3-23001, in 2013 6th UK Millimeter Waves and THz Technology Workshop (UCMMT) (Europe, China, 2013), pp. 1–2Google Scholar
  34. 34.
    C. Weickhmann, R. Jakoby, E. Constable, R. Lewis, Time-domain spectroscopy of novel nematic liquid crystals in the terahertz range, in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2013) pp. 1–2Google Scholar
  35. 35.
    F. Gölden, A. Gäbler, S. Müller, A. Lapanik, W. Haase, R. Jakoby, Liquid-crystal varactors with fast switching times for microwave applications. Electron. Lett. 44(7), 480–481 (2008)CrossRefGoogle Scholar
  36. 36.
    F. Gölden, Liquid crystal based microwave components with fast response times: material, technology, power handling capability. Ph.D. thesis, Technische Universität Darmstadt, Fachgebiet Mikrowellentechnik (2010)Google Scholar
  37. 37.
    O. H. Karabey, Electronic beam steering and polarization agile planar antennas in liquid crystal technology. Ph.D. thesis, TU Darmstadt, Cham, 2014. Zugl. Darmstadt, Techn. Univ., Diss (2013)Google Scholar
  38. 38.
    J. Martel, R. Marqués, F. Falcone, J. Baena, F. Medina, F. Martín, M. Sorolla, IEEE Microw. Wirel. Compon. Lett. 14, 210–212 (2004)Google Scholar
  39. 39.
    A. Véandlez, F. Aznar, M. Durán-Sindreu, J. Bonache, F. Martín, Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators, IET Microwaves, Antennas Propagation (2011) vol. 5(21), pp. 277–281Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Terahertz Sensors Group, Department of Electrical Engineering and Information TechnologyTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations