Skip to main content

Tunable Transmission Line Metamaterials

  • Chapter
  • First Online:
Tunable Microwave Metamaterial Structures

Part of the book series: Springer Theses ((Springer Theses))

  • 1424 Accesses

Abstract

Transmission line metamaterials using the possibility of forward- and backward wave propagation or the independent design of the phase and impedance (Eleftheriades, et al. IEEE Trans Microw Theory Tech, 50:2702–2712, 2002, [1], Iyer, Eleftheriades, 2002 IEEE MTT-S international microwave symposium digest, vol 2, pp 1067–1070, 2002, [2], Caloz, Itoh, 2003 IEEE MTT-S international microwave symposium digest, vol 1, pp 195–198, 2003, [3], Caloz, Itoh, IEEE Trans Antennas Propag 52:1159–1166, 2004, [4], Lai, et al. IEEE Microw 5(3):34–50, 2004, [5]), have a broad range of potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Eleftheriades, A. Iyer, P. Kremer, Planar negative refractive index media using periodically l-c loaded transmission lines. IEEE Trans. Microw. Theory Tech. 50, 2702–2712 (2002)

    Article  Google Scholar 

  2. A. Iyer, G. Eleftheriades, Negative refractive index metamaterials supporting 2-d waves, in 2002 IEEE MTT-S International Microwave Symposium Digest, (2002) vol. 2, pp. 1067–1070

    Google Scholar 

  3. C. Caloz, T. Itoh, Novel microwave devices and structures based on the transmission line approach of meta-materials, in 2003 IEEE MTT-S International Microwave Symposium Digest (2003) vol. 1, pp. 195–198

    Google Scholar 

  4. C. Caloz, T. Itoh, Transmission line approach of left-handed (lh) materials and microstrip implementation of an artificial lh transmission line. IEEE Trans. Antennas Propag. 52, 1159–1166 (2004)

    Article  Google Scholar 

  5. A. Lai, T. Itoh, C. Caloz, Composite right/left-handed transmission line metamaterials. IEEE Microw. 5(3), 34–50 (2004)

    Article  Google Scholar 

  6. M. Gil, J. Bonache, J. Selga, J. García-García, F. Martín, High-pass filters implemented by composite right/left handed (crlh) transmission lines based on complementary split rings resonators (csrrs). PIERS online 3(3), 251–253 (2007)

    Article  Google Scholar 

  7. C. Damm, M. SchüBler, J. Freese, R. Jakoby, Artificial line phase shifter with separately tunable phase and line impedance, in Proceeding of the 36th European Microwave Conference (2006) pp. 423–426

    Google Scholar 

  8. A. Giere, C. Damm, P. Scheele, R. Jakoby, Lh phase shifter using ferroelectric varactors, in Proceeding of the IEEE Radio and Wireless Symposium (2006) pp. 403–406

    Google Scholar 

  9. C. Caloz, A. Sanada, T. Itoh, A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Trans. Microw. Theory Tech. 52, 980–992 (2004)

    Article  Google Scholar 

  10. L. Liu, C. Caloz, T. Itoh, Electron. Lett. 38(2), 1414–1416 (2002)

    Google Scholar 

  11. C. Caloz, T. Itoh, A. Rennings, Crlh metamaterial leaky-wave and resonant antennas. IEEE Antennas Propag. Mag. 50, 25–39 (2008)

    Article  Google Scholar 

  12. D. Jackson, C. Caloz, T. Itoh, Leaky-wave antennas. Proc. IEEE 100, 2194–2206 (2012)

    Article  Google Scholar 

  13. A. Sanada, C. Caloz, T. Itoh, Novel zeroth-order resonance in composite right/left-handed transmission line resonators. Proc. Asia-Pacific Microw. Conf. 3, 1588–1591 (2003)

    Google Scholar 

  14. M. SchüBler, C. Damm, J. Freese, R. Jakoby, Realization concepts for compact microstrip antennas with periodically loaded lines, in Proceeding of the IEEE MTT-S International Microwave Symposium Digest ( 2005) pp. 4

    Google Scholar 

  15. M. SchüBler, C. Damm, M. Maasch, R. Jakoby, Performance evaluation of left-handed delay lines for rfid backscatter applications, in Proc. IEEE MTT-S International Microwave Symposium Digest (2008) pp. 177–180

    Google Scholar 

  16. C. Damm, M. SchüBler, M. Puentes, H. Maune, M. Maasch, R. Jakoby, Artificial transmission lines for high sensitive microwave sensors (2009)

    Google Scholar 

  17. C. Damm, M. Maasch, M. SchüBler, R. Jakoby, Double series and double parallel unit cells for transmission line metamaterials. Electron. Lett. 46(2), 112–113 (2010)

    Article  Google Scholar 

  18. C. Caloz, Dual composite right/left-handed (D-CRLH) transmission line metamaterial. IEEE Microw. Wirel. Compon. Lett. 16, 585–587 (2006)

    Article  Google Scholar 

  19. F. Gölden, A. Gäbler, M. Göbel, A. Manabe, S. Müller, R. Jakoby, Tunable liquid crystal phase shifter for microwave frequencies. Electron. Lett. 45, 686–687 (2009)

    Article  Google Scholar 

  20. A. Mössinger, R. Marin, S. Müller, J. Freese, R. Jakoby, Electronically reconfigurable reflectarrays with nematic liquid crystals. Electron. Lett. 42(1), 899–900 (2006)

    Article  Google Scholar 

  21. W. Hu, R. Cahill, J. Encinar, R. Dickie, H. Gamble, V. Fusco, N. Grant, Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal. IEEE Trans. Antennas Propag. 56, 3112–3117 (2008)

    Article  Google Scholar 

  22. W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, S. Rea, Liquid crystal tunable mm wave frequency selective surface. IEEE Microw. Wirel. Compon. Lett. 17, 667–669 (2007)

    Article  Google Scholar 

  23. F. Zhang, G. Houzet, E. Lheurette, D. Lippens, M. Chaubet, X. Zhao, Negative-zero-positive metamaterial with omega-type metal inclusions. J. Appl. Phys. 103(8), 084312 (2008)

    Article  Google Scholar 

  24. F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, D. Lippens, Voltage tunable short wire-pair type of metamaterial infiltrated by nematic liquid crystal. Appl. Phys. Lett. 97(13) (2010)

    Google Scholar 

  25. C. Damm, M. Maasch, R. Gonzalo, R. Jakoby, Tunable composite right/left-handed leaky wave antenna based on a rectangular waveguide using liquid crystals (2010) pp. 13–16

    Google Scholar 

  26. M. Roig, M. Maasch, C. Damm, R. Jakoby, Liquid crystal-based tunable crlh-transmission line for leaky wave antenna applications at ka-band. Int. J. Microw. Wirel. Technol. 6(3–4), 325–330 (2014)

    Article  Google Scholar 

  27. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, International series of monographs on physics (Clarendon Press, Oxford, 1995)

    Google Scholar 

  28. P. Collings, M. Hird, Introduction to Liquid Crystals: Chemistry and Physics, Liquid Crystals Book Series (Taylor & Francis, Boca Raton, 1997)

    Book  Google Scholar 

  29. D. Yang, S. Wu, Fundamentals of Liquid Crystal Devices, Wiley Series in Display Technology (Wiley, New York, 2006)

    Book  Google Scholar 

  30. A. Gäbler, F. Gölden, S. Müller, R. Jakoby, Multiphysics simulations for tunability efficiency evaluation of liquid crystal based rf. Frequenz 62(9–10), 240–245 (2008)

    Google Scholar 

  31. A. Gäbler, F. Gölden, S. Müller, R. Jakoby, Modeling of electrically tunable transmission line phase shifter based on liquid crystal, in 2008. AP-S 2008. IEEE Antennas and Propagation Society International Symposium (2008) pp. 1–4

    Google Scholar 

  32. G. Perez-Palomino, R. Florencio, J. A. Encinar, M. Barba, R. Dickie, R. Cahill, P. Baine, M. Bain, R.R. Boix, Accurate and efficient modeling to calculate the voltage dependence of liquid crystal based reflectarray cells (2014)

    Google Scholar 

  33. R. Dudley, M. Naftaly, Thz optical constants of liquid crystals bl037 and gt3-23001, in 2013 6th UK Millimeter Waves and THz Technology Workshop (UCMMT) (Europe, China, 2013), pp. 1–2

    Google Scholar 

  34. C. Weickhmann, R. Jakoby, E. Constable, R. Lewis, Time-domain spectroscopy of novel nematic liquid crystals in the terahertz range, in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2013) pp. 1–2

    Google Scholar 

  35. F. Gölden, A. Gäbler, S. Müller, A. Lapanik, W. Haase, R. Jakoby, Liquid-crystal varactors with fast switching times for microwave applications. Electron. Lett. 44(7), 480–481 (2008)

    Article  Google Scholar 

  36. F. Gölden, Liquid crystal based microwave components with fast response times: material, technology, power handling capability. Ph.D. thesis, Technische Universität Darmstadt, Fachgebiet Mikrowellentechnik (2010)

    Google Scholar 

  37. O. H. Karabey, Electronic beam steering and polarization agile planar antennas in liquid crystal technology. Ph.D. thesis, TU Darmstadt, Cham, 2014. Zugl. Darmstadt, Techn. Univ., Diss (2013)

    Google Scholar 

  38. J. Martel, R. Marqués, F. Falcone, J. Baena, F. Medina, F. Martín, M. Sorolla, IEEE Microw. Wirel. Compon. Lett. 14, 210–212 (2004)

    Google Scholar 

  39. A. Véandlez, F. Aznar, M. Durán-Sindreu, J. Bonache, F. Martín, Tunable coplanar waveguide band-stop and band-pass filters based on open split ring resonators and open complementary split ring resonators, IET Microwaves, Antennas Propagation (2011) vol. 5(21), pp. 277–281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Maasch .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maasch, M. (2016). Tunable Transmission Line Metamaterials. In: Tunable Microwave Metamaterial Structures . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-28179-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28179-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28178-0

  • Online ISBN: 978-3-319-28179-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics