Skip to main content

Wave Propagation in Periodic Structures

  • Chapter
  • First Online:
  • 2087 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Wave propagation in periodic structures is closely related to propagation of waves in continuous media. Thus, dispersion parameters such as wavenumber and wave impedance or permeability and permittivity, can be used to describe the propagation of waves in one-dimensional periodic structures like loaded or artificial transmission lines and waveguides, and in two- and three-dimensional structures like artificial lenses, transmit arrays and meta surfaces. In this chapter, the connection between transmission line theory and effective material parameters, that can be used to describe the propagation of waves in periodic lattices, is investigated. Furthermore, based on a general form of a transmission line model and effective material parameters, a physical limitation for dispersion characteristics and corresponding equivalent circuit are derived. Finally, the effect of discretization and finite unit cell size in periodic structures on effective material parameters is considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Losses can be taken into account by adding a resistance to each necessary reactive element, yielding \(\delta >0\).

  2. 2.

    In a two- or three-dimensonal anisotropic material, the angle between the Poynting vector and wave vector can have arbitrary values [7].

References

  1. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)

    Google Scholar 

  2. D. Pozar, Microwave Engineering (Wiley, New York, 2012)

    Google Scholar 

  3. G. Eleftheriades, A. Iyer, P. Kremer, Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. Microw. Theory Tech. 50, 2702–2712 (2002)

    Article  Google Scholar 

  4. K .G. Eleftheriades, G.V. Balmain, Negative-Refraction Metamaterials—Fundamental Principles and Applications (Wiley, New York, 2005)

    Book  Google Scholar 

  5. A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271–5283 (1998)

    Article  Google Scholar 

  6. H.M. Nussenzveig, Causality and Dispersion Relations (Academic Press, New York, 1972)

    Google Scholar 

  7. T.M. Grzegorczyk, M. Nikku, X. Chen, B.-I. Wu, J.A. Kong, Refraction laws for anisotropic media and their application to left-handed metamaterials. IEEE Trans. Microw. Theory Tech. 53(4), 1443–1450 (2005)

    Article  Google Scholar 

  8. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov. Phys. Uspekhi 10(4), 509 (1968)

    Article  Google Scholar 

  9. L.D. Landau, E.M. Lifshitz, A.L. King, Electrodynamics of continuous media. Am. J. Phys. 29(9), 647–648 (1961)

    Article  Google Scholar 

  10. B. Girod, R. Rabenstein, A. Stenger, Einführung in die Systemtheorie: Signale und Systeme in der Elektrotechnik und Informationstechnik. Lehrbuch Elektrotechnik (Vieweg+Teubner Verlag, 2007)

    Google Scholar 

  11. J.S. Toll, Causality and the dispersion relation: logical foundations. Phys. Rev. 104, 1760–1770 (1956)

    Article  MathSciNet  Google Scholar 

  12. R.L. Weaver, Y.-H. Pao, Dispersion relations for linear wave propagation in homogeneous and inhomogeneous media. J. Math. Phys. 22(9), 1909–1918 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill Series in Electrical and Computer Engineering (McGraw Hill, New York, 2000)

    Google Scholar 

  14. A. Iyer, G. Eleftheriades, Negative refractive index metamaterials supporting 2-d waves, in 2002 IEEE MTT-S International Microwave Symposium Digest, vol. 2 (2002), pp. 1067–1070

    Google Scholar 

  15. A. Lai, T. Itoh, C. Caloz, Composite right/left-handed transmission line metamaterials. IEEE Microw. 5(3), 34–50 (2004)

    Article  Google Scholar 

  16. C. Caloz, Dual composite right/left-handed (D-CRLH) transmission line metamaterial. IEEE Microw. Wirel. Compon. Lett. 16, 585–587 (2006)

    Article  Google Scholar 

  17. R.M. Foster, A reactance theorem. Bell Syst. Tech. J. 3(2), 259–267 (1924)

    Article  Google Scholar 

  18. M.I. Stockman, Criterion for negative refraction with low optical losses from a fundamental principle of causality. Phys. Rev. Lett. 98, 177404+ (2007)

    Article  Google Scholar 

  19. V.V. Varadan, R. Ro, Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality. IEEE Trans. Microw. Theory Tech. 55, 2224–2230 (2007)

    Article  Google Scholar 

  20. Z. Szabo, G.-H. Park, R. Hedge, E.-P. Li, A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Trans. Microw. Theory Tech. 58(10), 2646–2653 (2010)

    Article  Google Scholar 

  21. R. Collin, I. Antennas, P. Society, Field theory of guided waves, in The IEEE/OUP Series on Electromagnetic Wave Theory (Formerly IEEE Only). Series Editor Series (IEEE Press, 1991)

    Google Scholar 

  22. C.R. Simovski, S.A. Tretyakov, Local constitutive parameters of metamaterials from an effective-medium perspective. Phys. Rev. B 75, 195111 (2007)

    Article  Google Scholar 

  23. T. Cui, D. Smith, R. Liu, Metamaterials: Theory, Design, and Applications (Springer, New York, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Maasch .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maasch, M. (2016). Wave Propagation in Periodic Structures. In: Tunable Microwave Metamaterial Structures . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-28179-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28179-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28178-0

  • Online ISBN: 978-3-319-28179-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics