Part of the Springer Theses book series (Springer Theses)


Metamaterials are artificial, engineered materials consisting of periodic arrangements of sub-wavelength unit cells, whose electromagnetic properties are primarily determined by their structure. Such artificially fabricated particles are able to generate an electromagnetic response that can be tailored independently for the electric and magnetic component of a wave. Hence, a periodic arrangement of these particles can be treated as an effective material described by a set of material parameters. This allows to create electromagnetic responses at a desired frequency that are not possible with naturally available materials. For example, at microwave frequencies the variety of magnetic materials is very limited. However, a magnetic response can be mimicked by using periodic arrangements of metallic rings.


Transmission Line Dispersion Parameter Electromagnetic Response Transmission Line Model Periodic Arrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Kock, Metal-lens antennas. Proc. IRE 34, 828–836 (1946)CrossRefGoogle Scholar
  2. 2.
    W. Rotman, Plasma simulation by artificial dielectrics and parallel-plate media. IRE Trans. Antennas Propag. 10, 82–95 (1962)CrossRefGoogle Scholar
  3. 3.
    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Soviet Physics Uspekhi 10(4), 509 (1968)CrossRefGoogle Scholar
  4. 4.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter 10(22), 4785 (1998)CrossRefGoogle Scholar
  5. 5.
    J. Pendry, A. Holden, D. Robbins, W. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)CrossRefGoogle Scholar
  6. 6.
    D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000). MayCrossRefGoogle Scholar
  7. 7.
    V.M. Shalaev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005). SepCrossRefGoogle Scholar
  9. 9.
    S. Zhang, W. Fan, K.J. Malloy, S. Brueck, N.C. Panoiu, R.M. Osgood, Near-infrared double negative metamaterials. Opt. Express 13, 4922–4930 (2005). JunCrossRefGoogle Scholar
  10. 10.
    D.R. Smith, J.J. Mock, A.F. Starr, D. Schurig, Gradient index metamaterials. Phys. Rev. E 71, 036609 (2005)CrossRefGoogle Scholar
  11. 11.
    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006)CrossRefGoogle Scholar
  12. 12.
    H. Chen, L. Ran, J. Huangfu, T.M. Grzegorczyk, J.A. Kong, Equivalent circuit model for left-handed metamaterials. J. Appl. Phys. 100(2), 024915 (2006)CrossRefGoogle Scholar
  13. 13.
    C. Weickhmann, R. Jakoby, E. Constable, R. Lewis, Time-domain spectroscopy of novel nematic liquid crystals in the terahertz range, in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pp. 1–2, Sept 2013Google Scholar
  14. 14.
    R. Dudley, M. Naftaly, Thz optical constants of liquid crystals bl037 and gt3-23001, in Millimeter Waves and THz Technology Workshop (UCMMT), 2013 6th UK, Europe, China, pp. 1–2 Sept 2013Google Scholar
  15. 15.
    C. Caloz T. Itoh, Application of the transmission line theory of left-handed (lh) materials to the realization of a microstrip “lh line”, in Antennas and Propagation Society International Symposium, 2002. IEEE, vol. 2, pp. 412–415 (2002)Google Scholar
  16. 16.
    A.A. Oliner, A periodic-structure negative-refractive-index medium without resonant elements. IEEE-APS/URSI Int’l Symp. Digest 41, 2002 (2002)Google Scholar
  17. 17.
    G. Eleftheriades, A. Iyer, P. Kremer, Planar negative refractive index media using periodically l-c loaded transmission lines. IEEE Trans. Microw. Theory Tech. 50, 2702–2712 (2002)CrossRefGoogle Scholar
  18. 18.
    L. Liu, C. Caloz, T. Itoh, Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability. Electron. Lett. 38, 1414–1416 (2002)CrossRefGoogle Scholar
  19. 19.
    C. Allen, C. Caloz, T. Itoh, Leaky-waves in a metamaterial-based two-dimensional structure for a conical beam antenna application. 2004 IEEE MTT-S Int. Microw. Symp. Dig. 1, 305–308 (2004)CrossRefGoogle Scholar
  20. 20.
    M. Schler, C. Damm, J. Freese, R. Jakoby, Realization concepts for compact microstrip antennas with periodically loaded lines, in Proceedings of IEEE MTT-S International Microwave Symposium Digest, p. 4 (2005)Google Scholar
  21. 21.
    M. Antoniades, G. Eleftheriades, Compact, linear, lead/lag phase shifters using negative refractive index metamaterials, in IEEE Antennas and Propagation Society International Symposium, 2003, vol. 3, pp. 367–370 (2003)Google Scholar
  22. 22.
    C. Damm, M. Schler, M. Oertel, R. Jakoby, Compact tunable periodically lc loaded microstrip line for phase shifting applications, in Proceedings of IEEE MTT-S International Microwave Symposium Digest, p. 4 (2005)Google Scholar
  23. 23.
    M. Schler, C. Damm, R. Jakoby, Periodically lc loaded lines for rfid backscatter applications, in Proceedings of the 1st Metamaterial Conference, Rome, Italy (2007)Google Scholar
  24. 24.
    M. Schler, C. Damm, M. Maasch, R. Jakoby, Performance evaluation of left-handed delay lines for rfid backscatter applications, in Proceedings of IEEE MTT-S International Microwave Symposium Digest, pp. 177–180 (2008)Google Scholar
  25. 25.
    J. Bonache, I. Gil, J. Garca-Garca, F. Martn, Novel microstrip bandpass filters based on complementary split-ring resonators. IEEE Trans. Microw. Theory Tech. 54, 265–271 (2006)CrossRefGoogle Scholar
  26. 26.
    I. Gil, J. Garca-Garca, J. Bonache, F. Martn, M. Sorolla, R. Marqus, Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies. Electron. Lett. 40, 1347–1348 (2004)CrossRefGoogle Scholar
  27. 27.
    I. Gil, J. Bonache, J. Garca-Garca, F. Martn, Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators. IEEE Trans. Microw. Theory Tech. 54, 2665–2674 (2006)CrossRefGoogle Scholar
  28. 28.
    A. Vlez, J. Bonache, F. Martn, Metamaterial transmission lines with tunable phase and characteristic impedance based on complementary split ring resonators. Microw. Opt. Tech. Lett. 51(8), 1966–1970 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Terahertz Sensors Group, Department of Electrical Engineering and Information TechnologyTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations