Skip to main content

Introduction

  • Chapter
  • First Online:
Tunable Microwave Metamaterial Structures

Part of the book series: Springer Theses ((Springer Theses))

  • 1382 Accesses

Abstract

Metamaterials are artificial, engineered materials consisting of periodic arrangements of sub-wavelength unit cells, whose electromagnetic properties are primarily determined by their structure. Such artificially fabricated particles are able to generate an electromagnetic response that can be tailored independently for the electric and magnetic component of a wave. Hence, a periodic arrangement of these particles can be treated as an effective material described by a set of material parameters. This allows to create electromagnetic responses at a desired frequency that are not possible with naturally available materials. For example, at microwave frequencies the variety of magnetic materials is very limited. However, a magnetic response can be mimicked by using periodic arrangements of metallic rings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Kock, Metal-lens antennas. Proc. IRE 34, 828–836 (1946)

    Article  Google Scholar 

  2. W. Rotman, Plasma simulation by artificial dielectrics and parallel-plate media. IRE Trans. Antennas Propag. 10, 82–95 (1962)

    Article  Google Scholar 

  3. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Soviet Physics Uspekhi 10(4), 509 (1968)

    Article  Google Scholar 

  4. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter 10(22), 4785 (1998)

    Article  Google Scholar 

  5. J. Pendry, A. Holden, D. Robbins, W. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Article  Google Scholar 

  6. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000). May

    Article  Google Scholar 

  7. V.M. Shalaev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005)

    Article  Google Scholar 

  8. S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005). Sep

    Article  Google Scholar 

  9. S. Zhang, W. Fan, K.J. Malloy, S. Brueck, N.C. Panoiu, R.M. Osgood, Near-infrared double negative metamaterials. Opt. Express 13, 4922–4930 (2005). Jun

    Article  Google Scholar 

  10. D.R. Smith, J.J. Mock, A.F. Starr, D. Schurig, Gradient index metamaterials. Phys. Rev. E 71, 036609 (2005)

    Article  Google Scholar 

  11. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006)

    Article  Google Scholar 

  12. H. Chen, L. Ran, J. Huangfu, T.M. Grzegorczyk, J.A. Kong, Equivalent circuit model for left-handed metamaterials. J. Appl. Phys. 100(2), 024915 (2006)

    Article  Google Scholar 

  13. C. Weickhmann, R. Jakoby, E. Constable, R. Lewis, Time-domain spectroscopy of novel nematic liquid crystals in the terahertz range, in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pp. 1–2, Sept 2013

    Google Scholar 

  14. R. Dudley, M. Naftaly, Thz optical constants of liquid crystals bl037 and gt3-23001, in Millimeter Waves and THz Technology Workshop (UCMMT), 2013 6th UK, Europe, China, pp. 1–2 Sept 2013

    Google Scholar 

  15. C. Caloz T. Itoh, Application of the transmission line theory of left-handed (lh) materials to the realization of a microstrip “lh line”, in Antennas and Propagation Society International Symposium, 2002. IEEE, vol. 2, pp. 412–415 (2002)

    Google Scholar 

  16. A.A. Oliner, A periodic-structure negative-refractive-index medium without resonant elements. IEEE-APS/URSI Int’l Symp. Digest 41, 2002 (2002)

    Google Scholar 

  17. G. Eleftheriades, A. Iyer, P. Kremer, Planar negative refractive index media using periodically l-c loaded transmission lines. IEEE Trans. Microw. Theory Tech. 50, 2702–2712 (2002)

    Article  Google Scholar 

  18. L. Liu, C. Caloz, T. Itoh, Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability. Electron. Lett. 38, 1414–1416 (2002)

    Article  Google Scholar 

  19. C. Allen, C. Caloz, T. Itoh, Leaky-waves in a metamaterial-based two-dimensional structure for a conical beam antenna application. 2004 IEEE MTT-S Int. Microw. Symp. Dig. 1, 305–308 (2004)

    Article  Google Scholar 

  20. M. Schler, C. Damm, J. Freese, R. Jakoby, Realization concepts for compact microstrip antennas with periodically loaded lines, in Proceedings of IEEE MTT-S International Microwave Symposium Digest, p. 4 (2005)

    Google Scholar 

  21. M. Antoniades, G. Eleftheriades, Compact, linear, lead/lag phase shifters using negative refractive index metamaterials, in IEEE Antennas and Propagation Society International Symposium, 2003, vol. 3, pp. 367–370 (2003)

    Google Scholar 

  22. C. Damm, M. Schler, M. Oertel, R. Jakoby, Compact tunable periodically lc loaded microstrip line for phase shifting applications, in Proceedings of IEEE MTT-S International Microwave Symposium Digest, p. 4 (2005)

    Google Scholar 

  23. M. Schler, C. Damm, R. Jakoby, Periodically lc loaded lines for rfid backscatter applications, in Proceedings of the 1st Metamaterial Conference, Rome, Italy (2007)

    Google Scholar 

  24. M. Schler, C. Damm, M. Maasch, R. Jakoby, Performance evaluation of left-handed delay lines for rfid backscatter applications, in Proceedings of IEEE MTT-S International Microwave Symposium Digest, pp. 177–180 (2008)

    Google Scholar 

  25. J. Bonache, I. Gil, J. Garca-Garca, F. Martn, Novel microstrip bandpass filters based on complementary split-ring resonators. IEEE Trans. Microw. Theory Tech. 54, 265–271 (2006)

    Article  Google Scholar 

  26. I. Gil, J. Garca-Garca, J. Bonache, F. Martn, M. Sorolla, R. Marqus, Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies. Electron. Lett. 40, 1347–1348 (2004)

    Article  Google Scholar 

  27. I. Gil, J. Bonache, J. Garca-Garca, F. Martn, Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators. IEEE Trans. Microw. Theory Tech. 54, 2665–2674 (2006)

    Article  Google Scholar 

  28. A. Vlez, J. Bonache, F. Martn, Metamaterial transmission lines with tunable phase and characteristic impedance based on complementary split ring resonators. Microw. Opt. Tech. Lett. 51(8), 1966–1970 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Maasch .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maasch, M. (2016). Introduction. In: Tunable Microwave Metamaterial Structures . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-28179-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28179-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28178-0

  • Online ISBN: 978-3-319-28179-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics