Skip to main content

Non-spore-Forming Bacterial Entomopathogens: Their Toxins, Hosts and the Environment: Why Be a Pathogen

  • Chapter
  • First Online:
The Rasputin Effect: When Commensals and Symbionts Become Parasitic

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 3))

Abstract

This chapter discusses the wide range of variables that can affect the virulence of a bacterial pathogen, as well as its ability to survive. These factors are diverse and operate both externally and internally to the bacterial cell. Similarly, the host is influenced by an array of environmental parameters. These processes in turn affect the efficacy of the pathogen. Factors that impart stress on the host will increase its susceptibility to a pathogen. When not in the presence of a host, the pathogen needs to be able to maintain itself, allowing it to persist and infect subsequent hosts. Pathogens are varied in both their ability to cause disease and in their host specificity. These factors affect pathogen dispersal and transfer to another host. In some instances, spread of a pathogen may be enabled by pathogen-induced changes in host behaviour. At the subcellular level, a pathogen is subjected to natural rates of gene mutation and/or large genomic changes resulting from processes such as horizontal gene transfer, whereby new virulence determinants might be acquired. Whether inside or outside of the host, selective biotic and abiotic forces act on the pathogen and its non-pathogenic counterparts. Competition and the process of natural selection may lead to the emergence of either more benign or more virulent strains.

This chapter focuses on non-spore-forming bacterial insect pathogens (entomopathogens) which, due to the absence of a spore-like survival structure, are more likely to be influenced by environmental changes. Entomopathogens may therefore provide greater clues for defining the driving forces behind pathogen evolution. A broad overview of external and subcellular variables that may influence both the pathogen and its host is given. The mechanisms of pathogen entry to the host and bacterial factors allowing a pathogen to survive within the host are then outlined. A range of pathogens, including those that are free-living, animal-vectored or plant-associated, are documented. Shared components of some multicomponent toxin systems that reside in both pathogens and symbionts are discussed, allowing us to propose a possible origin of the toxin transport machinery. In the final sections of the chapter, two case studies are presented: (1) the species-specific and chronic disease in grass grubs (Costelytra zealandica) caused by the bacterium Serratia entomophila and (2) the rapidly killing broad host-range pathogen Yersinia entomophaga. In both these instances the respective strategies of the pathogen are discussed in relation to their environment, applying the knowledge from earlier in the chapter to help define why these two different types of pathogen reside in the same environment and ask “why be a pathogen?”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktories K, Schwan C, Papatheodorou P, Lang AE (2012) Bidirectional attack on the actin cytoskeleton. Bacterial protein toxins causing polymerization or depolymerization of actin. Toxicon 60:572–581

    Article  CAS  PubMed  Google Scholar 

  • Alaux C, Ducloz F, Crauser D et al (2010) Diet effects on honeybee immunocompetence. Biol Lett 6:562–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Albert-Weissenberger C, Cazalet C, Buchrieser C (2007) Legionella pneumophila—a human pathogen that co-evolved with fresh water protozoa. Cell Mol Life Sci 64:432–448

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Aperis G, Fuchs BB, Anderson CA et al (2007) Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes Infect 9:729–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey MJ, Hughes C, Koronakis V (2003) RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. Mol Microbiol 26:845–851

    Article  Google Scholar 

  • Ball OJ-P, Coudron TA, Tapper BA et al (2006) Importance of host plant species, Neotyphodium endophyte isolate, and alkaloids on feeding by Spodoptera frugiperda (Lepidoptera : Noctuidae) larvae. J Econ Entomol 99:1462–1473

    Article  CAS  PubMed  Google Scholar 

  • Bapteste E, O’Malley MA, Beiko RG et al (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4:34. doi:10.1186/1745-6150-4-34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Behie SW, Bidochka MJ (2014) Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl Environ Microbiol 80:1553–1560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bergin D, Reeves EP, Renwick J et al (2005) Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 73:4161–4170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidla G, Lindgren M, Theopold U et al (2005) Hemolymph coagulation and phenoloxidase in Drosophila larvae. Dev Comp Immunol 29:669–679

    Article  CAS  PubMed  Google Scholar 

  • Blackburn M, Golubeva E, Bowen D et al (1998) A novel insecticidal toxin from Photorhabdus luminescens, toxin complex a (Tca), and Its histopathological effects on the midgut of Manduca sexta. Appl Environ Microbiol 64:3036–3041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn MB, Farrar RR, Novak NG et al (2006) Remarkable susceptibility of the diamondback moth (Plutella xylostella) to ingestion of Pir toxins from Photorhabdus luminescens. Entomologia Exper et Applica 121:31–37

    Article  CAS  Google Scholar 

  • Blackburn MB, Martin PAW, Kuhar D et al (2011) The occurrence of Photorhabdus-like toxin complexes in Bacillus thuringiensis. PLoS One. doi:10.1371/journal.pone.0018122

    Google Scholar 

  • Blanford S, Thomas MB (1999) Host thermal biology: the key to understanding host–pathogen interactions and microbial pest control? Agric For Entomol 1:195–202

    Article  Google Scholar 

  • Bönemann G, Pietrosiuk A, Mogk A (2010) Tubules and donuts: a type VI secretion story. Mol Microbiol 76:815–821

    Article  PubMed  CAS  Google Scholar 

  • Bordenstein SR, Reznikoff WS (2005) Mobile DNA in obligate intracellular bacteria. Nat Rev Microbiol 3:688–699

    Article  CAS  PubMed  Google Scholar 

  • Borlee BR, Geske GD, Robinson CJ et al (2008) Quorum-sensing signals in the microbial community of the cabbage white butterfly larval midgut. ISME J 2:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornberg-Bauer E, Albà MM (2013) Dynamics and adaptive benefits of modular protein evolution. Curr Opin Struct Biol 23:459–466

    Article  CAS  PubMed  Google Scholar 

  • Boucias DG, Bradford DL, Barfield CS (1984) Susceptibility of the velvetbean caterpillar and soybean looper (Lepidoptera: Noctuidae) to Nomuraea rileyi: effects of pathotype, dosage, temperature, and host age. J Econ Entomol 77:247–253

    Article  Google Scholar 

  • Bowen D, Ensign JC (1998) Purification and characterisation of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl Environ Microbiol 64:3029–3035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen D, Rocheleau TA, Blackburn M et al (1998) Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280:2129–2132

    Article  CAS  PubMed  Google Scholar 

  • Bowman JP (2007) Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar Drugs 5:220–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bresolin G, Morgan JA, Ilgen D et al (2006) Low temperature-induced insecticidal activity of Yersinia enterocolitica. Mol Microbiol 59:503–512

    Article  CAS  PubMed  Google Scholar 

  • Brillard J, Boyer‐Giglio MH, Boemare N et al (2003) Holin locus characterisation from lysogenic Xenorhabdus nematophila and its involvement in Escherichia coli SheA haemolytic phenotype. FEMS Microbiol Lett 218:107–113

    Article  CAS  PubMed  Google Scholar 

  • Brunder W, Karch H (2000) Genome plasticity in Enterobacteriaceae. Int J Med Microbiol 290:153–165

    Article  CAS  PubMed  Google Scholar 

  • Buell CR, Joardar V, Lindeberg M et al (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 100:10181–10186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busby JN, Panjiker S, Landsberg MJ et al (2013) The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. Nature 501:547–550

    Article  CAS  PubMed  Google Scholar 

  • Büttner D, He SY (2009) Type III secretion in plant pathogenic bacteria. Plant Physiol 150:1656–1664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cabral CM, Cherqui A, Pereira A et al (2004) Metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29. Appl Environ Microbiol 70:3831–3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casadevall A, Pirofski L-A (1999) Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun 67:3703–3713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casadevall A, Pirofski L-A (2001) Host‐pathogen interactions: the attributes of virulence. J Infect Dis 184:337–344

    Article  CAS  PubMed  Google Scholar 

  • Catalão MJ, Gil F, Moniz-Pereira J et al (2013) Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev 37:554–571

    Article  PubMed  CAS  Google Scholar 

  • Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    Article  CAS  PubMed  Google Scholar 

  • Chapman RF (2012) In: Simpson SJ, Douglas AE (eds) The insects: structure and function, 5th ed. Cambridge University Press, Cambridge

    Google Scholar 

  • Chattopadhyay P, Gorthi S, Chatterjee S et al (2011) Characterization of bacterial isolates as natural biocontrolling agents of bollworm from an epizootic pest (Heliothis armigera). Pest Technol 5:81–85

    Google Scholar 

  • Chattopadhyay P, Chatterjee S, Gorthi S et al (2012) Exploring agricultural potentiality of Serratia entomophila AB2: dual property of biopesticide and biofertilizer. Br Biotechnol J 2:1–12

    Article  Google Scholar 

  • Chouikha I, Hinnebusch BJ (2012) Yersinia-flea interactions and the evolution of the arthropod-borne transmission route of plague. Curr Opin Microbiol 15:239–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke DJ, Dowds BCQ (1991) Pathogenicity of Xenorhabdus luminescens. Biochem Soc Trans 20:65S

    Article  Google Scholar 

  • Coombes BK (2009) Type III secretion systems in symbiotic adaptation of pathogenic and non-pathogenic bacteria. Trends Microbiol 17:89–94

    Article  CAS  PubMed  Google Scholar 

  • Daborn PJ, Waterfield NR, Silva CP et al (2002) A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci U S A 88:10742–10747

    Article  CAS  Google Scholar 

  • Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465

    Article  CAS  PubMed  Google Scholar 

  • Darmon E, Leach DR (2014) Bacterial genome instability. Microbiol Mol Biol Rev 78:1–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bentzmann S, Giraud C, Bernard CS et al (2012) Unique biofilm signature, drug susceptibility and decreased virulence in Drosophila through the Pseudomonas aeruginosa two-component system PprAB. PLoS Pathog. doi:10.1371/journal.ppat.1003052

    PubMed  Google Scholar 

  • Derzelle S, Turlin E, Duchaud E et al (2004) The PhoP-PhoQ two-component regulatory system of Photorhabdus luminescens is essential for virulence in insects. J Bacteriol 186:1270–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diene SM, Merhej V, Henry M et al (2013) The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new “killer bugs” are created because of a sympatric lifestyle. Mol Biol Evol 30:369–383

    Article  CAS  PubMed  Google Scholar 

  • Dillon RJ, Vennard CT, Buckling A et al (2005) Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett 8:1291–1298

    Article  Google Scholar 

  • Dimijian GG (2000) Evolving together: the biology of symbiosis, part 1. Proc (Bayl Univ Med Cent) 13:217–226

    CAS  Google Scholar 

  • Dodd SJ (2003) Horizontal transfer of plasmid-borne insecticidal toxin genes of Serratia species. PhD dissertation, University of Otago

    Google Scholar 

  • Dodd SJ, Hurst MRH, Glare TR et al (2006) Occurrence of Sep insecticidal toxin complex genes in Serratia species and Yersinia frederiksenii. Appl Environ Microbiol 72:6584–6592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowling AJ, Daborn PJ, Waterfield NR et al (2004) The insecticidal toxin Makes caterpillars floppy (Mcf) promotes apoptosis in mammalian cells. Cell Microbiol 6:345–353

    Article  CAS  PubMed  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF et al (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580

    Article  CAS  PubMed  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735

    Article  CAS  PubMed  Google Scholar 

  • Engleberg NC, DiRita VJ, Dermody TS (eds) (2012) Schaechter’s mechanisms of microbial disease, 5th edn. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  • Fagan WF, Seimann E, Mitter C et al (2002) Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat 160:784–802

    Article  PubMed  Google Scholar 

  • Farrar RR, Martin PAW, Ridgway RL (2001) A strain of Serratia marcescens (Enterobacteriaceae) with high virulence per os to larvae of a laboratory colony of the corn earworm (Lepidoptera: Noctuidae). J Entomol Sci 36:380–390

    Google Scholar 

  • Fauvarque MO, Bergeret E, Chabert J et al (2002) Role and activation of type III secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing. Microb Pathog 32:287–295. doi:10.1006/mpat.2002.0504

    Article  CAS  PubMed  Google Scholar 

  • Fedhila S, Daou N, Lereclus D et al (2006) Identification of Bacillus cereus internalin and other candidate virulence genes specifically induced during oral infection in insects. Mol Microbiol 62:339–355

    Article  CAS  PubMed  Google Scholar 

  • Fedhila S, Buisson C, Dussurget O et al (2010) Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. J Invertebr Pathol 103:24–29

    Article  CAS  PubMed  Google Scholar 

  • Ferron P (1977) Influence of relative humidity on the development of fungal infection caused by Beauveria bassiana (Fungi Imperfecti, Moniliales) in imagines of Acanthoscelides obtectus (Col. : Bruchidae). Entomophaga 22:393–396

    Article  Google Scholar 

  • ffrench-Constant R, Waterfield N (2005) An ABC guide to the bacterial toxin complexes. Adv Appl Microbiol 58C:169–183

    Article  PubMed  Google Scholar 

  • ffrench-Constant RH, Dowling A, Waterfield N (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49:436–451

    Article  CAS  PubMed  Google Scholar 

  • Frank AC, Alsmark CM, Thollesson M et al (2005) Functional divergence and horizontal transfer of type IV secretion systems. Mol Biol Evol 22:1325–1336

    Article  CAS  PubMed  Google Scholar 

  • Friman VP, Hiltunen T, Jalasvuori M et al (2011) High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs. PLoS One 6:e17651. doi:10.1371/journal.pone.0017651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frost LS, Leplae R, Summers AO et al (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  CAS  PubMed  Google Scholar 

  • Fuchs TM, Bresolin G, Marcinowski L et al (2008) Insecticidal genes of Yersinia spp.: taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. BMC Microbiol 8:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galdiero S, Galdiero M, Pedone C (2007) β-Barrel membrane bacterial proteins: structure, function, assembly and interaction with lipids. Curr Protein Pept Sci 8:63–82

    Article  CAS  PubMed  Google Scholar 

  • Gardner SN, Thomas MB (2002) Costs and benefits of fighting infection in locusts. Evol Ecol Res 4:109–131

    Google Scholar 

  • Gatehouse HS, Marshall SD, Simpson RM et al (2008) Serratia entomophila inoculation causes a defect in exocytosis in Costelytra zealandica larvae. Insect Mol Biol 17:375–385

    Article  CAS  PubMed  Google Scholar 

  • Gatsogiannis C, Lang AE, Meusch D et al (2013) A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495:520–523

    Article  CAS  PubMed  Google Scholar 

  • Georgiades K (2012) Genomics of epidemic pathogens. Clin Microbiol Infect 18:213–217

    Article  CAS  PubMed  Google Scholar 

  • Georgiades K, Raoult D (2010) Defining pathogenic bacterial species in the genomic era. Front Microbiol 1:article 151. doi:10.3389/fmicb.2010.00151

    PubMed  Google Scholar 

  • Giddens SR, Tormo A, Mahanty HK (2000) Expression of the antifeeding gene anfA1 in Serratia entomophila requires rpoS. Appl Environ Microbiol 66:1711–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill JJ, Young R (2011) Therapeutic applications of phage biology: history, practice and recommendations. In: Miller AA, Miller PF (eds) Emerging trends in antibacterial discovery: answering the call to arms. Caister Academic, Norfolk, UK

    Google Scholar 

  • Givaudan A, Lanois A (2000) flhDC, the Flagellar Master Operon of Xenorhabdus nematophilus: requirement for motility, lipolysis, extracellular hemolysis, and full virulence in insects. J Bacteriol 182:107–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glare TR, Corbett GE, Sadler AJ (1993) Association of a large plasmid with amber disease of the New Zealand grass grub, Costelytra zealandica, caused by Serratia entomophila and Serratia proteamaculans. J Invertebr Pathol 62:165–170

    Article  CAS  Google Scholar 

  • Glare TR, Hurst MR, Grkovic S (1996) Plasmid transfer among several members of the family Enterobacteriaceae increases the number of species capable of causing experimental amber disease in grass grub. FEMS Microbiol Lett 139:117–120

    Article  CAS  Google Scholar 

  • González-Santoyo I, Córdoba-Aguilar A (2012) Phenoloxidase: a key component of the insect immune system. Entomol Exp App 142:1–16

    Article  CAS  Google Scholar 

  • Gophna U, Ron EZ, Graur D (2003) Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312:151–163

    Article  CAS  PubMed  Google Scholar 

  • Grimont PA, Grimont F (1978) The genus Serratia. Annu Rev Microbiol 32:221–248

    Article  CAS  PubMed  Google Scholar 

  • Grimont PAD, Jackson TA, Ageron E et al (1988) Serratia entomophila sp. nov. associated with amber disease in the New Zealand grass grub Costelytra zealandica. Int J Syst Bacteriol 38:1–6

    Article  CAS  Google Scholar 

  • Grkovic S, Glare TR, Jackson TA et al (1995) Genes essential for amber disease in grass grubs are located on the large plasmid found in Serratia entomophila and Serratia proteamaculans. Appl Environ Microbiol 61:2218–2223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groisman EA, Ochman H (1996) Pathogenicity Islands: bacterial evolution in quantum leaps. Cell 87:791–794

    Article  CAS  PubMed  Google Scholar 

  • Hachani A, Allsopp LP, Oduko Y et al (2014) Effectors delivery systems for bacterial Type VI the VgrG proteins are “à la Carte”. J Biol Chem 289:17872–17884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 2:376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    Article  CAS  PubMed  Google Scholar 

  • Hacker J, Bender L, Ott M et al (1990) Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog 8:213–225

    Article  CAS  PubMed  Google Scholar 

  • Haine ER, Rolff J, Siva-Jothy MT (2007) Functional consequences of blood clotting in insects. Dev Comp Immunol 31:456–464

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Heermann R, Fuchs TM (2008) Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity. BMC Genomics 9:40. doi:10.1186/1471-2164-9-40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hegedus D, Erlandson M, Gillott C et al (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54:285–302

    Article  CAS  PubMed  Google Scholar 

  • Hejazi A, Falkiner FR (1997) Serratia marcescens. J Med Microbiol 46:903–912

    Article  CAS  PubMed  Google Scholar 

  • Held KG, LaRock CN, David A et al (2007) Metalloprotease secreted by the insect pathogen Photorhabdus luminescens induces melanization. Appl Environ Microbiol 73:7622–7628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill CW, Sandt CH, Vlazny DA (1994) Rhs elements of Escherichia coli: a family of genetic composites each encoding a large mosaic protein. Mol Microbiol 12:865–871

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch BJ, Rosso ML, Schwan TG et al (2002) High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol Microbiol 46:349–354

    Article  CAS  PubMed  Google Scholar 

  • Hosseinidoust Z, van de Ven TGM, Tufenkji N (2013) Evolution of Pseudomonas aeruginosa virulence as a result of phage predation. Appl Environ Microbiol 79:6110–6116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huberty AF, Denno RF (2006) Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life-history strategies. Oecologia 149:444–455

    Article  PubMed  Google Scholar 

  • Hughes DP, Andersen S, Hywel-Jones NL et al (2011) Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol 11:13. doi:10.1186/1472-6785-11-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurst MR, Jackson TA (2002) Use of the green fluorescent protein to monitor the fate of Serratia entomophila causing amber disease in the New Zealand grass grub, Costelytra zealandica. J Microbiol Methods 50:1–8

    Article  CAS  PubMed  Google Scholar 

  • Hurst MR, Glare TR, Jackson TA et al (2000) Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J Bacteriol 182:5127–5138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst MRH, Glare TR, Jackson TA (2004) Cloning Serratia entomophila anti-feeding genes—a putative defective prophage active against the grass grub Costelytra zealandica. J Bacteriol 186:5116–5128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst MR, Beard SS, Jackson TA et al (2007a) Isolation and characterization of the Serratia entomophila antifeeding prophage. FEMS Microbiol Lett 270:42–48

    Article  CAS  PubMed  Google Scholar 

  • Hurst MR, Jones SM, Tan B et al (2007b) Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiol Lett 275:160–167

    Article  PubMed  CAS  Google Scholar 

  • Hurst MR, Becher SA, O’Callaghan M (2011a) Nucleotide sequence of the Serratia entomophila plasmid pADAP and the Serratia proteamaculans pU143 plasmid virulence associated region. Plasmid 65:32–41

    Article  CAS  PubMed  Google Scholar 

  • Hurst MR, Becher SA, Young SD et al (2011b) Yersinia entomophaga sp. nov., isolated from the New Zealand grass grub Costelytra zealandica. Int J Syst Evol Microbiol 61:844–849

    Article  CAS  PubMed  Google Scholar 

  • Hurst MRH, Jones SA, Tan B et al (2011c) The main virulence determinant of Yersinia entomophaga MH96 is a broad host range insect active, Toxin Complex. J Bacteriol 193:1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst MR, van Koten C, Jackson TA (2014) Pathology of Yersinia entomophaga MH96 towards Costelytra zealandica (Coleoptera; Scarabaeidae) larvae. J Invertebr Pathol 115:102–107

    Article  PubMed  Google Scholar 

  • Hurst MRH, Beattie A, Jones S et al (2015) Galleria mellonella mortality as a result of Yersinia entomophaga infection is temperature-dependent. App Environ Microbiol 81:6404–6414

    Article  CAS  Google Scholar 

  • Inglis GD, Lawrence AM (2001) Effects of Serratia marcescens on the F1 generation of laboratory-reared Heliothis virescens (Lepidoptera: Noctuidae). J Econ Entomol 94:362–366

    Article  CAS  PubMed  Google Scholar 

  • Jackson TA (1995) Amber disease reduces trypsin activity in midgut of Costelytra zealandica (Coleoptera: Scarabaeidae) larvae. J Invertebr Pathol 65:68–69

    Article  Google Scholar 

  • Jackson TA, McNeill MR (1998) Premature death in parasitized Listronotus bonariensis adults can be caused by bacteria transmitted by the parasitoid Microctonus hyperodae. Biocontrol Sci Technol 8:389–396

    Article  Google Scholar 

  • Jackson TA, Huger AM, Glare TR (1993) Pathology of amber disease in the New Zealand grass grub Costelytra zealandica (Coleoptera: Scarabaeidae). J Invertebr Pathol 61:123–130

    Article  Google Scholar 

  • Jackson TA, Townsend RJ, Barlow ND (1999) Predicting grassgrub population change in Canterbury. In: Mathiessen JN (ed) Proceedings of the 7th Australasian conference on grassland invertebrate ecology, CSIRO Entomology, Perth, pp 21–26

    Google Scholar 

  • Jackson TA, Boucias DG, Thaler JO (2001) Pathobiology of amber disease, caused by Serratia spp., in the New Zealand grass grub, Costelytra zealandica. J Invertebr Pathol 78:232–243

    Article  CAS  PubMed  Google Scholar 

  • Jaronski ST (2010) Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55:159–185

    Article  Google Scholar 

  • Jarrett P, Stephenson M (1990) Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Appl Environ Microbiol 56:1608–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Ge SR, Tao Y et al (2005) Identification of a pathogenic strain of locusts and its toxicity and pathology. Acta Microbiol Sin 45:172–176

    Google Scholar 

  • Joshi MC, Sharma A, Kant S et al (2008) An insecticidal GroEL protein with chitin binding activity from Xenorhabdus nematophila. J Biol Chem 283:28287–28296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce SA, Brachmann AO, Glazer I et al (2008) Bacterial biosynthesis of a multipotent stilbene. Angew Chem Int Ed Engl 47:1942–1945

    Article  CAS  PubMed  Google Scholar 

  • Jubelin G, Pagès S, Lanois A et al (2011) Studies of the dynamic expression of the Xenorhabdus FliAZ regulon reveal atypical iron-dependent regulation of the flagellin and haemolysin genes during insect infection. Environ Microbiol 13:1271–1284

    Article  CAS  PubMed  Google Scholar 

  • Jurat-Fuentes JL, Jackson TA (2012) Bacterial entomopathogens. In: Vega FE, Kaya HA (eds) Insect pathology, 2nd edn. Elsevier, San Diego, CA, pp 265–349

    Chapter  Google Scholar 

  • Kain WM, Atkinson DS (1970) A rational approach to grass grub control. In: Matthews LJ (ed) Proceedings of the 23rd NZ weed and pest control conference, Palmerston North, August, pp 180–183

    Google Scholar 

  • Kaska M (1976) The toxicity of extracellular proteases of the bacterium Serratia marcescens for larvae of greater wax moth, Galleria mellonella. J Invertebr 27:385–386

    Article  Google Scholar 

  • Kawanishi CY, Splittstoesser CM, Tashiro H (1978) Infection of the European chafer, Amphimallon majalis, by Bacillus popilliae: ultrastructure. J Invertebr Pathol 31:91–102

    Article  Google Scholar 

  • Khandelwal P, Banerjee-Bhatnagar N (2003) Insecticidal activity associated with the outer membrane vesicles of Xenorhabdus nematophilus. Appl Environ Microbiol 69:2032–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinkel LL, Bakker MG, Schlatter DC (2011) A coevolutionary framework for managing disease-suppressive soils. Annu Rev Phytopathol 49:47–67

    Article  CAS  PubMed  Google Scholar 

  • Koskiniemi S, Lamoureux JG, Nikolakakis KC et al (2013) Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci USA 110:7032–7037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koskiniemi S, Garza-Sánchez F, Sandegren L et al (2014) Selection of orphan Rhs toxin expression in evolved Salmonella enterica serovar Typhimurium. PLoS Genet 10:e1004255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the post antibiotic era. Cold Spring Harb Perspect Med 3:a010306. doi:10.1101/cshperspect.a010306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kulkarni HM, Jagannadham MV (2014) Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology. doi:10.1099/mic.0.079400-0

    PubMed  Google Scholar 

  • Kupferschmied P, Maurhofer M, Keel C (2013) Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front Plant Sci 4:287. doi:10.3389/fpls.2013.00287

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuraishi T, Binggeli O, Opota O et al (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci USA 108:15966–15971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    Article  CAS  PubMed  Google Scholar 

  • Landsberg MJ, Jones SA, Rothnagel R et al (2011) 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proc Natl Acad Sci USA 108:20544–20549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32:1295–1309

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Stoilova-McPhie S, Baxter L et al (2007) Structural characterisation of the insecticidal toxin XptA1, reveals a 1.15 MDa tetramer with a cage-like structure. J Mol Biol 366:1558–1568

    Article  CAS  PubMed  Google Scholar 

  • Lehane MJ (1997) Peritrophic matrix structure and function. Annu Rev Entomol 42:525–550

    Article  CAS  PubMed  Google Scholar 

  • Leiman PG, Basler M, Ramagopal UA et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 106:4154–4159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemichez E, Flatau G, Bruzzone M et al (1997) Molecular localization of the Escherichia coli cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains. Mol Microbiol 24:1061–1070

    Article  CAS  PubMed  Google Scholar 

  • Lemke T, Stingl U, Egert M et al (2003) Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6650–6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin BR, Bull JJ (1994) Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol 2:76–81

    Article  CAS  PubMed  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Loper JE, Hassan KA, Mavrodi DV et al (2012) Comparative genomics of plant- associated Pseudomonas spp. : insights into diversity and inheritance of traits involved in multitrophic inter actions. PLoS Genet 8:e1002784. doi:10.1371/journal.pgen.1002784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis C, Jourdan M, Cabanac M (1986) Behavioral fever and therapy in a Rickettsia-infected Orthoptera. Am J Physiol 250:R991–R995

    CAS  PubMed  Google Scholar 

  • Lysenko O (1976) Chitinase of Serratia marcescens and its toxicity to insects. J Invertebr Pathol 27:385–386

    Article  CAS  Google Scholar 

  • Maezawa K, Shigenobu S, Taniguchi TH et al (2006) Hundreds of flagellar basal bodies cover the cell surface of the endosymbiotic bacterium Buchnera aphidicola sp. strain APS. J Bacteriol 188:6539–6543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan-Miklos S, Rahme LG, Ausubel FM (2000) Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol Microbiol 37:981–988

    Article  CAS  PubMed  Google Scholar 

  • Mallo GV, Kurz CL, Couillault C et al (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12:1209–1214

    Article  CAS  PubMed  Google Scholar 

  • Marshall SD, Gatehouse LN, Becher SA et al (2008) Serine proteases identified from a Costelytra zealandica (White) (Coleoptera: Scarabaeidae) midgut EST library and their expression through insect development. Insect Mol Biol 17:247–259

    Article  CAS  PubMed  Google Scholar 

  • Marshall SDG, Hares MC, Jones SA et al (2012) Histolopathological effects of the Yen-Tc toxin complex from Yersina entomophaga MH96 (Enterobacteriaceae) on the midgut of Costelytra zealandica (Coleoptera: Scarabaeidae) larvae. Appl Environ Microbiol 78:4835–4847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez JL (2013) Bacterial pathogens: from natural ecosystems to human hosts. Environ Microbiol 15:325–333

    Article  PubMed  CAS  Google Scholar 

  • Mascher T, Helmann JD, Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70:910–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matz C, Deines P, Jurgens K (2002) Phenotypic variation in Pseudomonas sp. CM10 determines microcolony formation and survival under protozoan grazing. FEMS Microbiol Ecol 39:57–65

    Article  CAS  PubMed  Google Scholar 

  • Maurelli AT (2007) Black holes, antivirulence genes, and gene inactivation in the evolution of bacterial pathogens. FEMS Microbiol Lett 267:1–8

    Article  CAS  PubMed  Google Scholar 

  • Maynard-Smith J (1990) Models of a dual inheritance system. J Theor Biol 143:41–53

    Article  CAS  PubMed  Google Scholar 

  • Mayr E (1961) Cause and effect in biology. Science 134:1501–1506

    Article  CAS  PubMed  Google Scholar 

  • McCann HC, Guttman DS (2008) Evolution of the type III secretion system and its effectors in plant–microbe interactions. New Phytol 177:33–47

    Article  CAS  PubMed  Google Scholar 

  • McDaniel LD, Young E, Delaney J et al (2010) High frequency of horizontal gene transfer in the oceans. Science 330:50

    Article  CAS  PubMed  Google Scholar 

  • McNew GL (1960) The nature, origin, and evolution of parasitism. In: Horsfall JC, Dimond AE (eds) Plant pathology: an advanced treatise. vol II, The pathogen. Academic, New York, pp p19–p69

    Google Scholar 

  • Medini D, Donati C, Tettelin H et al (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    Article  CAS  PubMed  Google Scholar 

  • Medrano-Soto A, Moreno-Hagelsieb G, Vinuesa P et al (2004) Successful lateral transfer requires codon usage compatibility between foreign genes and recipient genomes. Mol Biol Evol 21:1884–1894

    Article  CAS  PubMed  Google Scholar 

  • Mekalanos JJ (1992) Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 174:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mell JC, Redfield RJ (2014) Natural competence and the evolution of DNA uptake specificity. J Bacteriol 196:1471–1483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merhej V, Notredame C, Royer-Carenzi M et al (2011) The rhizome of life: the sympatric Rickettsia felis paradigm demonstrates the random transfer of DNA sequences. Mol Biol Evol 28:3213–3223

    Article  CAS  PubMed  Google Scholar 

  • Meusch D, Gatsogiannis C, Efremov RG et al (2014) Mechanism of Tc toxin action revealed in molecular detail. Nature 508:61–65

    Article  CAS  PubMed  Google Scholar 

  • Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510

    Article  CAS  PubMed  Google Scholar 

  • Miest TS, Bloch-Qazi M (2008) Sick of mating: sexual transmission of a pathogenic bacterium. Fly (Austin) 2:215–219

    Article  Google Scholar 

  • Moliner C, Fournier PE, Raoult D (2010) Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol Rev 34:281–294

    Article  CAS  PubMed  Google Scholar 

  • Molmeret M, Horn M, Wagner M et al (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586

    Article  CAS  PubMed  Google Scholar 

  • Morgan JA, Sergeant M, Ellis D et al (2001) Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol 67:2062–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moya A, Pereto J, Gil R et al (2008) Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet 9:218–229

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee K, Domann E, Hain T (2011) Insect Biotechnology the greater wax moth Galleria mellonella as an alternative model host for human pathogens. Biol Inspired Syst 2:3–14

    Google Scholar 

  • Mulcahy H, Sibley CD, Surette MG et al (2011) Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS Pathog 7:e1002299. doi:10.1371/journal.ppat.1002299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musser RO, Kwon HS, Williams SA et al (2005) Evidence that caterpillar labial saliva suppresses infectivity of potential bacterial pathogens. Arch Insect Biochem Physiol 58:138–144

    Article  CAS  PubMed  Google Scholar 

  • Mylonakis E, Casadevall A, Ausubel FM (2007) Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog 3:e101. doi:10.1371/journal.ppat.0030101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nichol HH, Law JH, Winzerling JJ (2002) Iron metabolism in insects. Annu Rev Entomol 47:535–559

    Article  CAS  PubMed  Google Scholar 

  • Nielsen-LeRoux C, Gaudriault S, Ramarao N et al (2012) How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr Opin Microbiol 15:220–231

    Article  PubMed  Google Scholar 

  • Nishiwaki H, Ito K, Shimomura M et al (2007) Insecticidal bacteria isolated from predatory larvae of the antlion species Myrmeleon bore (Neuroptera: Myrmeleontidae). J Invertebr Pathol 96:80–88

    Article  PubMed  Google Scholar 

  • Nuñez-Valdez ME, Calderón MA, Aranda E et al (2008) Identification of a putative Mexican strain of Serratia entomophila pathogenic against root damaging larvae of Scarabaeidae (Coleoptera). Appl Environ Microbiol 74:802–810

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan M, Garnham ML, Nelson TL et al (1996) The pathogenicity of Serratia strains to Lucilia sericata (Diptera: Calliphoridae). J Invertebr Pathol 68:22–27

    Article  PubMed  Google Scholar 

  • O’Callaghan M, Young SD, Barlow ND et al (1999) The ecology of grass grub pathogenic Serratia spp. in New Zealand pastures. In: Mathiessen JN (ed) Proceedings of the 7th Australasian conference on grassland invertebrate ecology. CSIRO Entomology, Perth, pp 85–91

    Google Scholar 

  • Ogata H, La Scola B, Audic S et al (2006) Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet 2:e76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci U S A 102:12795–12800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver KM, Moran NA, Hunte MS (2006) Costs and benefits of a superinfection of facultative symbionts in aphids. Proc Biol Sci 273:1273–1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver KM, Degnan PH, Burke GR et al (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

    Article  CAS  PubMed  Google Scholar 

  • Opota O, Vallet-Gély I, Vincentelli R et al (2011) Monalysin, anovel β-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog 7:e1002259. doi:10.1371/journal.ppat.1002259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owuama CI (2001) Entomopathogenic symbiotic bacteria, Xenorhabdus and Photorhabdus of nematodes. World J Microbiol Biotechnol 17:505–515

    Article  CAS  Google Scholar 

  • Pallen MJ, Wren BW (2007) Bacterial pathogenomics. Nature 449:835–842

    Article  CAS  PubMed  Google Scholar 

  • Park D, Forst S (2006) Co-regulation of motility, exoenzyme and antibiotic production by the EnvZ-OmpR-FlhDC-FliA pathway in Xenorhabdus nematophila. Mol Microbiol 61:1397–1412

    Article  CAS  PubMed  Google Scholar 

  • Paz-Y-Mino CG, Espinosa A (2010) Integrating horizontal gene transfer and common descent to depict evolution and contrast it with “common design”. J Eukaryot Microbiol 57:11–18

    Article  CAS  Google Scholar 

  • Péchy-Tarr M, Bruck DJ, Maurhofer M et al (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10:2368–2386

    Article  PubMed  CAS  Google Scholar 

  • Péchy-Tarr M, Borel N, Kupferschmied P et al (2013) Control and host-dependent activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environ Microbiol 15:736–750

    Article  PubMed  CAS  Google Scholar 

  • Pedrini N, Ortiz-Urquiza A, Huarte-Bonnet C et al (2013) Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Front Microbiol 4:24. doi:10.3389/fmicb.2013.00024

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedulla ML, Ford ME, Houtz JM et al (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182

    Article  CAS  PubMed  Google Scholar 

  • Penz T, Horn M, Schmitz-Esser S (2010) The genome of the amoeba symbiont “Candidatus Amoebophilus asiaticus” encodes an Afp-like prophage possibly used for protein secretion. Virulence 1:541–545

    Article  PubMed  Google Scholar 

  • Penz T, Schmitz-Esser S, Kelly SE et al (2012) Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet 8(10):e1003012. doi:10.1371/journal.pgen.1003012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson OP, Pinhassi J, Riemann L et al (2009) High abundance of virulence gene homologues in marine bacteria. Environ Microbiol 11:1348–1357

    Article  PubMed  PubMed Central  Google Scholar 

  • Pingoud A, Fuxreiter M, Pingoud V et al (2005) Type II restriction endonucleases: structure and mechanism. Cell Mol Life Sci 62:685–707

    Article  CAS  PubMed  Google Scholar 

  • Pinyon RA, Linedale EC, Webster MA et al (1996) Tn5-induced Xenorhabdus bovienii lecithinase mutants demonstrate reduced virulence for Galleria mellonella larvae. J App Bacteriol 80:411–417

    Article  CAS  Google Scholar 

  • Podgwaite JD, Cosenza BJ (1976) A strain of Serratia marcescens pathogenic for larvae of Lymantria dispar: infectivity and mechanisms of pathogenicity. J Invertebr Pathol 27:199–208

    Article  Google Scholar 

  • Poinar GO, Wassink HJM, Leegwater-van der Linden ME et al (1979) Serratia marcescens as a pathogen of tsetse flies. Acta Trop 36:223–227

    PubMed  Google Scholar 

  • Poole T, Crippen T (2009) Conjugative plasmid transfer between Salmonella enterica Newport and Escherichia coli within the gastrointestinal tract of the lesser mealworm beetle, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Poult Sci 88:1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Popa O, Hazkani-Covo E, Landan G et al (2011) Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res 21:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preston GM (2007) Metropolitan microbes: type III secretion in multihost symbionts. Cell Host Microbe 2:291–294

    Article  CAS  PubMed  Google Scholar 

  • Rahme LG, Stevens EJ, Wolfort SF et al (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902

    Article  CAS  PubMed  Google Scholar 

  • Rahme LG, Ausubel FM, Cao H et al (2000) Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A 97:8815–8821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rankin DJ, Rocha EP, Brown SP (2011) The evolutionary significance of costly punishment is still to be demonstrated. Heredity 106:1–10

    Article  CAS  PubMed  Google Scholar 

  • Raoult D, Boyer M (2010) Amoebae as genitors and reservoirs of giant viruses. Intervirology 53:321–329

    Article  PubMed  Google Scholar 

  • Raymond B, Wyres K, Sheppard S et al (2010) Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoS Pathog 6(5):e1000905. doi:10.1371/jounrnal.ppat.1000905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Regev A, Keller M, Strizhov N et al (1996) Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62:3581–3586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodou A, Ankrah DO, Stathopoulos C (2010) Toxins and secretion systems of Photorhabdus luminescens. Toxins (Basel) 2:1250–1264

    Article  CAS  Google Scholar 

  • Rohmer L, Hocquet D, Miller SI (2011) Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 19:341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruffner B, Péchy-Tarr M, Ryffel F et al (2013) Oral insecticidal activity of plant-associated pseudomonads. Environ Microbiol 15:751–763

    Article  CAS  PubMed  Google Scholar 

  • Russell AB, Peterson SB, Mougous JD (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12:137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rybakova D, Radjainia M, Turner A et al (2013) Role of antifeeding prophage (Afp) protein Afp16 in terminating the length of the Afp tailocin and stabilizing its sheath. Mol Microbiol 89:702–714

    Article  CAS  PubMed  Google Scholar 

  • Sarkar SF, Guttman DS (2004) Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol 70:1999–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarris PF, Ladoukakis ED, Panopoulos NJ et al (2014) A phage tail-derived element with wide distribution among both prokaryotic domains: a comparative genomic and phylogenetic study genome. Biol Evol 6:1739–1747

    Google Scholar 

  • Schell MA, Lipscomb L, DeShazer D (2008) Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei. J Bacteriol 190:2306–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavo G, van der Goot FG (2001) The bacterial toxin toolkit. Nat Rev Mol Cell Biol 2:530–537

    Article  CAS  PubMed  Google Scholar 

  • Schikora M, Neupane B, Madhogaria S et al (2012) An image classification approach to analyze the suppression of plant immunity by the human pathogen Salmonella Typhimurium. BMC Bioinformatics 13:171. doi:10.1186/1471-2105-13-171

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholthof K-B (2007) The disease triangle: pathogens, the environment and society. Nat Rev Microbiol 5:152–156

    Article  CAS  PubMed  Google Scholar 

  • Senior NJ, Bagnall MC, Champion OL et al (2011) Galleria mellonella as an infection model for Campylobacter jejuni virulence. J Med Microbiol 60:661–669

    Article  PubMed  Google Scholar 

  • Sergeant M, Jarrett P, Ousley M et al (2003) Interactions of insecticidal toxin gene products from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol 69:3344–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sergeant M, Baxter L, Jarrett P et al (2006) Identification, typing, and insecticidal activity of Xenorhabdus isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the xpt toxin loci. Appl Environ Microbiol 72:5895–5907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp PM, Li WH (1987) The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe ES, Detroy RW (1979) Fat body depletion, a debilitating result of milky disease in Japanese beetle larvae. J Invertebr Pathol 34:92–94

    Article  Google Scholar 

  • Shen X, Hu H, Peng H et al (2013) Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 14:271. doi:10.1186/1471-2164-14-271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikuma NJ, Pilhofer M, Weiss GL et al (2014) Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 343:529–533

    Article  CAS  PubMed  Google Scholar 

  • Shneider MM, Buth SA, Ho BT et al (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500:350–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siefert JL (2009) Defining the mobilome. In: Gogarten MB, Gogarten JP, Olendzenski L (eds) Horizontal gene transfer: genomes in flux. Humana, New York, pp 13–27

    Chapter  Google Scholar 

  • Singh J, Banerjee N (2008) Transcriptional analysis and functional characterization of a gene pair encoding iron-regulated xenocin and immunity proteins of Xenorhabdus nematophila. J Bacteriol 190:3877–3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Park D, Forst S et al (2013) Xenocin export by the flagellar type III pathway in Xenorhabdus nematophila. J Bacteriol 195:1400–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slatten BH, Larson AD (1967) Mechanism of pathogenicity of Serratia marcescens I. Virulence for the adult boll weevil. J Invertebr Pathol 9:78–81

    Article  Google Scholar 

  • Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18C:96–104

    Article  CAS  Google Scholar 

  • Somvanshi VS, Kaufmann-Daszczuk B, K-S K et al (2010) Photorhabdus phase variants express a novel fimbrial locus, mad, essential for symbiosis. Mol Microbiol 77:1021–1038

    CAS  PubMed  Google Scholar 

  • Somvanshi VS, Sloup RE, Crawford JM et al (2012) A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states. Science 337:88–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song CJ, Seo S, Shrestha S et al (2011) Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella. J Microbiol Biotechnol 21:317–322

    CAS  PubMed  Google Scholar 

  • Splittstoesser CM, Tashiro H, Lin SL et al (1973) Histopathology of the European chafer, Amphimallon majalis, infected with Bacillus popilliae. J Invertebr Pathol 22:161–167

    Article  Google Scholar 

  • Steinhaus EA (1941) A study of the bacteria associated with thirty species of insects. J Bacteriol 42:757–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinhaus EA (1959) Serratia marcescens Bizio as an insect pathogen. Hilgardia 28:351–380

    Article  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  PubMed  Google Scholar 

  • Stucki G, Jackson TA, Noonan MJ (1984) Isolation and characterisation of Serratia strains pathogenic for larvae of the New Zealand grass grub Costelytra zealandica. N Z J Sci 27:255–260

    Google Scholar 

  • Tao K, Long Z, Liu K et al (2006) Purification and properties of a novel insecticidal protein from the locust pathogen Serratia marcescens HR-3. Curr Microbiol 52:45–49

    Article  CAS  PubMed  Google Scholar 

  • Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47:47–61

    Article  CAS  PubMed  Google Scholar 

  • Thamthiankul S, Suan-Ngay S, Tantimavanich S et al (2001) Chitinase from Bacillus thuringiensis subsp. pakistani. Appl Microbiol Biotechnol 56:395–401

    Article  CAS  PubMed  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    Article  CAS  PubMed  Google Scholar 

  • Thomas DJI, Morgan JAW, Whipps JM et al (2000) Plasmid transfer between the Bacillus thuringiensis subspecies kurstaki and tenebrionis in laboratory culture and soil and in lepidopteran and coleopteran larvae. Appl Environ Microbiol 66:118–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas DJI, Morgan JAW, Whipps JM et al (2001) Plasmid transfer between Bacillus thuringiensis subsp. israelensis strains in laboratory culture, river water, and dipteran larvae. Appl Environ Microbiol 67:330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toft C, Andersson SGE (2010) Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet 11:465–475

    Article  CAS  PubMed  Google Scholar 

  • Toft C, Fares MA (2008) The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes. Mol Biol Evol 25:2069–2076

    Article  CAS  PubMed  Google Scholar 

  • Touchon M, Hoede C, Tenaillon O et al (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Gent. doi:10.1371/journal.pgen.1000344

    Google Scholar 

  • Tseng TT, Tyler BM, Setubal JC (2009) Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiol 9(Suppl 1):S2. doi:10.1186/1471-2180-9-S1-S2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vallet-Gely I, Lemaitre B, Boccard F (2008) Bacterial strategies to overcome insect defences. Nat Rev Microbiol 6:302–313

    Article  CAS  PubMed  Google Scholar 

  • Vigneux FF, Zumbihl R, Jubelin G et al (2007) The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens. J Biol Chem 282:9571–9580

    Article  CAS  PubMed  Google Scholar 

  • Vodovar N, Vinals M, Liehl P et al (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci U S A 102:11414–11419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vodovar N, Vallenet D, Cruveiller S et al (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Sato M (1998) Plasmid-mediated gene transfer between insect-resident bacteria, Enterobacter cloacae, and plant-epiphytic bacteria, Erwinia herbicola, in guts of silkworm larvae. Curr Microbiol 37:352–355

    Article  CAS  PubMed  Google Scholar 

  • Waterfield NR, Bowen DJ, Fetherston JD et al (2001) The tc genes of Photorhabdus: a growing family. Trends Microbiol 9:185–191

    Article  CAS  PubMed  Google Scholar 

  • Waterfield NR, Daborn PJ, ffrench-Constant RH (2002) Genomic islands in Photorhabdus. Trends Microbiol 10:541–545

    Article  CAS  PubMed  Google Scholar 

  • Waterfield NR, Wren BW, ffrench-Constant RH (2004) Invertebrates as a source of emerging human pathogens. Nat Rev Microbiol 2:833–841

    Article  CAS  PubMed  Google Scholar 

  • Waterfield N, Hares M, Dowling A et al (2005a) Potentiation and cellular phenotypes of the insecticidal toxin complexes of Photorhabdus bacteria. Cell Microbiol 7:373–382

    Article  CAS  PubMed  Google Scholar 

  • Waterfield N, Kamita SG, Hammock BD et al (2005b) The Photorhabdus Pir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity. FEMS Microbiol Lett 245:47–52

    Article  CAS  PubMed  Google Scholar 

  • Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574

    Article  CAS  PubMed  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  CAS  PubMed  Google Scholar 

  • Westra ER, Swarts DC, Staals RH et al (2012) The CRISPRs, they are a-changin: how prokaryotes generate adaptive immunity. Annu Rev Genet 46:311–339

    Article  CAS  PubMed  Google Scholar 

  • Westra ER, Buckling A, Fineran PC (2014) CRISPR–Cas systems: beyond adaptive immunity. Nat Rev Microbiol 12:317–326

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC (2003) The versatile beta-barrel membrane protein. Curr Opin Struct Biol 13:404–411

    Article  CAS  PubMed  Google Scholar 

  • Wiwat C, Thaithanum S, Pantuwatana S et al (2000) Toxicity of chitinase-producing Bacillus thuringiensis ssp. kurstaki HD-1 (G) toward Plutella xylostella. J Invertebr Pathol 76:270–277

    Article  CAS  PubMed  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Dowling AJ, Gerike U et al (2006) Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J Bacteriol 188:2254–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young R (2014) Phage lysis: three steps, three choices, one outcome. J Microbiol 52:243–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, de Souza RF, Anantharaman V et al (2012) Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 7:18. doi:10.1186/1745-6150-7-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Tamsin R Sheen, for proofreading and helpful comments. Pauline Hunt, for the production of graphics. Christon J Hurst for his invitation to write the chapter and his efforts and input through the course of writing. Financial support for writing this chapter was provided by the Ministry of Business, Innovation and Employment, New Zealand grant: Next generation bio pesticides (C10X1310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. H. Hurst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hurst, M.R.H. (2016). Non-spore-Forming Bacterial Entomopathogens: Their Toxins, Hosts and the Environment: Why Be a Pathogen. In: Hurst, C. (eds) The Rasputin Effect: When Commensals and Symbionts Become Parasitic. Advances in Environmental Microbiology, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-28170-4_8

Download citation

Publish with us

Policies and ethics