Skip to main content

How Well Do Surrogate Hosts Serve as Model Systems for Understanding Pathogenicity

  • Chapter
  • First Online:
Book cover The Rasputin Effect: When Commensals and Symbionts Become Parasitic

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 3))

Abstract

Experimental infection studies are of crucial importance to find and characterize virulence factors of pathogens or to identify novel compounds that can be used to treat the corresponding infections. The use of mammalian infection models including mice, rats, and guinea pigs is restricted due to several reasons including high costs, low statistical power, and ethical reservations. Simple, invertebrate models have been introduced as surrogate hosts as they are inexpensive, they can be used in great numbers, and doing experiments with them is not accompanied by ethical reservations. The soil nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster have served as the most important surrogate hosts. Both organisms have served as workhorses in various biomedical disciplines. They combine simple and cheap handling and housing with an enormous armamentarium of genetic tools available to the scientific community. As their innate immune systems share substantial similarities with our own one, human bacterial and fungal pathogens often also infect these surrogate hosts. Nevertheless, it has to be kept in mind that both hosts share some drawbacks such as the apparent lack of adaptive immunity or the inability to survive at 37 °C. The latter point is relevant for especially those pathogens that require higher temperatures to become pathogenically triggered, and thus it would be helpful to seek the introduction of alternative models that can be used under these conditions. The greater wax moth Galleria mellonella exactly fits into this gap although it lacks most of the benefits supplied by the “classical” model organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aballay A, Yorgey P, Ausubel FM (2000) Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr Biol 10(23):1539–1542

    Article  CAS  PubMed  Google Scholar 

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Siden-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, Woodage T, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC (2000) The genome sequence of Drosophila melanogaster. Science 287(5461):2185–2195

    Article  PubMed  Google Scholar 

  • Alarco AM, Marcil A, Chen J, Suter B, Thomas D, Whiteway M (2004) Immune-deficient Drosophila melanogaster: a model for the innate immune response to human fungal pathogens. J Immunol 172(9):5622–5628

    Article  CAS  PubMed  Google Scholar 

  • Anastassopoulou CG, Fuchs BB, Mylonakis E (2011) Caenorhabditis elegans-based model systems for antifungal drug discovery. Curr Pharm Des 17(13):1225–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apidianakis Y, Rahme LG, Heitman J, Ausubel FM, Calderwood SB, Mylonakis E (2004) Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response. Eukaryot Cell 3(2):413–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421(6920):268–272. doi:10.1038/nature01279

    Article  CAS  PubMed  Google Scholar 

  • Ayres JS, Freitag N, Schneider DS (2008) Identification of Drosophila mutants altering defense of and endurance to Listeria monocytogenes infection. Genetics 178(3):1807–1815. doi:10.1534/genetics.107.083782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae T, Banger AK, Wallace A, Glass EM, Aslund F, Schneewind O, Missiakas DM (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A 101(33):12312–12317. doi:10.1073/pnas.0404728101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basset A, Khush RS, Braun A, Gardan L, Boccard F, Hoffmann JA, Lemaitre B (2000) The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proc Natl Acad Sci U S A 97(7):3376–3381. doi:10.1073/pnas.070357597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker T, Loch G, Beyer M, Zinke I, Aschenbrenner AC, Carrera P, Inhester T, Schultze JL, Hoch M (2010) FOXO-dependent regulation of innate immune homeostasis. Nature 463(7279):369–373. doi:10.1038/nature08698

    Article  CAS  PubMed  Google Scholar 

  • Begun J, Sifri CD, Goldman S, Calderwood SB, Ausubel FM (2005) Staphylococcus aureus virulence factors identified by using a high-throughput Caenorhabditis elegans-killing model. Infect Immun 73(2):872–877. doi:10.1128/IAI.73.2.872-877.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender JK, Wille T, Blank K, Lange A, Gerlach RG (2013) LPS structure and PhoQ activity are important for Salmonella Typhimurium virulence in the Galleria mellonella infection model [corrected]. PLoS One 8(8):e73287. doi:10.1371/journal.pone.0073287

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergin D, Brennan M, Kavanagh K (2003) Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microbes Infect 5(15):1389–1395

    Article  PubMed  Google Scholar 

  • Bergin D, Murphy L, Keenan J, Clynes M, Kavanagh K (2006) Pre-exposure to yeast protects larvae of Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated by the increased expression of antimicrobial peptides. Microbes Infect 8(8):2105–2112. doi:10.1016/j.micinf.2006.03.005

    Article  CAS  PubMed  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    CAS  PubMed  Google Scholar 

  • Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E (2007) Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 3(2):18. doi:10.1371/journal.ppat.0030018

    Article  CAS  Google Scholar 

  • Brennan M, Thomas DY, Whiteway M, Kavanagh K (2002) Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol 34(2):153–157

    Article  CAS  PubMed  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner S (2003) Nature’s gift to science (Nobel lecture). Chembiochem 4(8):683–687. doi:10.1002/cbic.200300625

    Article  CAS  PubMed  Google Scholar 

  • Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23(19):2333–2344. doi:10.1101/gad.1827009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns AR, Kwok TC, Howard A, Houston E, Johanson K, Chan A, Cutler SR, McCourt P, Roy PJ (2006) High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nat Protoc 1(4):1906–1914. doi:10.1038/nprot.2006.283

    Article  CAS  PubMed  Google Scholar 

  • Castonguay-Vanier J, Vial L, Tremblay J, Deziel E (2010) Drosophila melanogaster as a model host for the Burkholderia cepacia complex. PLoS One 5(7):e11467. doi:10.1371/journal.pone.0011467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chambers MC, Lightfield KL, Schneider DS (2012) How the fly balances its ability to combat different pathogens. PLoS Pathog 8(12):e1002970. doi:10.1371/journal.ppat.1002970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamilos G, Lewis RE, Hu J, Xiao L, Zal T, Gilliet M, Halder G, Kontoyiannis DP (2008) Drosophila melanogaster as a model host to dissect the immunopathogenesis of zygomycosis. Proc Natl Acad Sci U S A 105(27):9367–9372. doi:10.1073/pnas.0709578105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng LW, Portnoy DA (2003) Drosophila S2 cells: an alternative infection model for Listeria monocytogenes. Cell Microbiol 5(12):875–885

    Article  CAS  PubMed  Google Scholar 

  • Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 98(5):2752–2757. doi:10.1073/pnas.051624298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman JJ, Muhammed M, Kasperkovitz PV, Vyas JM, Mylonakis E (2011) Fusarium pathogenesis investigated using Galleria mellonella as a heterologous host. Fungal Biol 115(12):1279–1289. doi:10.1016/j.funbio.2011.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Couillault C, Ewbank JJ (2002) Diverse bacteria are pathogens of Caenorhabditis elegans. Infect Immun 70(8):4705–4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, Simoes Rde M, Gruber S, Puc U, Ebersberger I, Zoranovic T, Neely GG, von Haeseler A, Ferrandon D, Penninger JM (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325(5938):340–343. doi:10.1126/science.1173164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Argenio DA, Gallagher LA, Berg CA, Manoil C (2001) Drosophila as a model host for Pseudomonas aeruginosa infection. J Bacteriol 183(4):1466–1471. doi:10.1128/JB.183.4.1466-1471.2001

    Article  PubMed  PubMed Central  Google Scholar 

  • Darby C (2005) Interactions with microbial pathogens. WormBook: the online review of C. elegans biology, pp 1–15. doi: 10.1895/wormbook.1.21.1

  • Darby C, Hsu JW, Ghori N, Falkow S (2002) Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417(6886):243–244. doi:10.1038/417243a

    Article  CAS  PubMed  Google Scholar 

  • Depraitere C, Darmon M (1978) [Growth of “Dictyostelium discoideum” on different species of bacteria (author’s transl)]. Ann Microbiol 129B(3):451–461

    Google Scholar 

  • Disson O, Lecuit M (2012) Targeting of the central nervous system by Listeria monocytogenes. Virulence 3(2):213–221. doi:10.4161/viru.19586

    Article  PubMed  PubMed Central  Google Scholar 

  • Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP (1999) Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29(2):239–244. doi:10.1086/520192

    Article  CAS  PubMed  Google Scholar 

  • Erickson DL, Russell CW, Johnson KL, Hileman T, Stewart RM (2011) PhoP and OxyR transcriptional regulators contribute to Yersinia pestis virulence and survival within Galleria mellonella. Microb Pathog 51(6):389–395. doi:10.1016/j.micpath.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  • Fauvarque MO, Bergeret E, Chabert J, Dacheux D, Satre M, Attree I (2002) Role and activation of type III secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing. Microb Pathog 32(6):287–295

    Article  CAS  PubMed  Google Scholar 

  • Fuchs BB, Eby J, Nobile CJ, El Khoury JB, Mitchell AP, Mylonakis E (2010a) Role of filamentation in Galleria mellonella killing by Candida albicans. Microbes Infect 12(6):488–496. doi:10.1016/j.micinf.2010.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs BB, O’Brien E, Khoury JB, Mylonakis E (2010b) Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence 1(6):475–482

    Article  PubMed  Google Scholar 

  • Ganesan S, Aggarwal K, Paquette N, Silverman N (2011) NF-kappaB/Rel proteins and the humoral immune responses of Drosophila melanogaster. Curr Top Microbiol Immunol 349:25–60. doi:10.1007/82_2010_107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibreel TM, Upton M (2013) Synthetic epidermicin NI01 can protect Galleria mellonella larvae from infection with Staphylococcus aureus. J Antimicrob Chemother 68(10):2269–2273. doi:10.1093/jac/dkt195

    CAS  PubMed  Google Scholar 

  • Glittenberg MT, Kounatidis I, Christensen D, Kostov M, Kimber S, Roberts I, Ligoxygakis P (2011a) Pathogen and host factors are needed to provoke a systemic host response to gastrointestinal infection of Drosophila larvae by Candida albicans. Dis Model Mech 4(4):515–525. doi:10.1242/dmm.006627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glittenberg MT, Silas S, MacCallum DM, Gow NA, Ligoxygakis P (2011b) Wild-type Drosophila melanogaster as an alternative model system for investigating the pathogenicity of Candida albicans. Dis Model Mech 4(4):504–514. doi:10.1242/dmm.006619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravato-Nobre MJ, Hodgkin J (2005) Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol 7(6):741–751. doi:10.1111/j.1462-5822.2005.00523.x

    Article  CAS  PubMed  Google Scholar 

  • Gravato-Nobre MJ, Nicholas HR, Nijland R, O’Rourke D, Whittington DE, Yook KJ, Hodgkin J (2005) Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 171(3):1033–1045. doi:10.1534/genetics.105.045716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha EM, Oh CT, Bae YS, Lee WJ (2005) A direct role for dual oxidase in Drosophila gut immunity. Science 310(5749):847–850. doi:10.1126/science.1117311

    Article  CAS  PubMed  Google Scholar 

  • Hamilos G, Samonis G, Kontoyiannis DP (2012) Recent advances in the use of Drosophila melanogaster as a model to study immunopathogenesis of medically important filamentous fungi. Int J Microbiol 2012:583792. doi:10.1155/2012/583792

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemmrich G, Miller DJ, Bosch TC (2007) The evolution of immunity: a low-life perspective. Trends Immunol 28(10):449–454. doi:10.1016/j.it.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  • Hilbi H, Weber SS, Ragaz C, Nyfeler Y, Urwyler S (2007) Environmental predators as models for bacterial pathogenesis. Environ Microbiol 9(3):563–575. doi:10.1111/j.1462-2920.2007.01238.x

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin J, Kuwabara PE, Corneliussen B (2000) A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol 10(24):1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin J, Felix MA, Clark LC, Stroud D, Gravato-Nobre MJ (2013) Two Leucobacter strains exert complementary virulence on Caenorhabditis including death by worm-star formation. Curr Biol 23(21):2157–2161. doi:10.1016/j.cub.2013.08.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hultmark D (2003) Drosophila immunity: paths and patterns. Curr Opin Immunol 15(1):12–19

    Article  CAS  PubMed  Google Scholar 

  • Irazoqui JE, Urbach JM, Ausubel FM (2010) Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 10(1):47–58. doi:10.1038/nri2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JC, Higgins LA, Lin X (2009) Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella. PLoS One 4(1):e4224. doi:10.1371/journal.pone.0004224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jansen WT, Bolm M, Balling R, Chhatwal GS, Schnabel R (2002) Hydrogen peroxide-mediated killing of Caenorhabditis elegans by Streptococcus pyogenes. Infect Immun 70(9):5202–5207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Vilcinskas A, Kanost MR (2010) Immunity in lepidopteran insects. Adv Exp Med Biol 708:181–204

    Article  CAS  PubMed  Google Scholar 

  • Junqueira JC (2012) Models hosts for the study of oral candidiasis. Adv Exp Med Biol 710:95–105. doi:10.1007/978-1-4419-5638-5_10

    Article  CAS  PubMed  Google Scholar 

  • Kirsanova RV, Levitin MM, Lekarkina LP, Usenko LI, Sharygin VI (1975) Drosophila and the entomopathogenic fungus Beauveria bassiana as a model for the study of host and parasite interrelationships. Zh Obshch Biol 36(2):251–258

    CAS  PubMed  Google Scholar 

  • Koch G, Nadal-Jimenez P, Cool RH, Quax WJ (2014) Assessing Pseudomonas virulence with nonmammalian host: Galleria mellonella. Methods Mol Biol 1149:681–688. doi:10.1007/978-1-4939-0473-0_52

    Article  PubMed  Google Scholar 

  • Kothe M, Antl M, Huber B, Stoecker K, Ebrecht D, Steinmetz I, Eberl L (2003) Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell Microbiol 5(5):343–351

    Article  CAS  PubMed  Google Scholar 

  • Kraaijeveld AR, Godfray HC (2008) Selection for resistance to a fungal pathogen in Drosophila melanogaster. Heredity 100(4):400–406. doi:10.1038/sj.hdy.6801092

    Article  CAS  PubMed  Google Scholar 

  • Lamaris GA, Chamilos G, Lewis RE, Kontoyiannis DP (2007) Virulence studies of Scedosporium and Fusarium species in Drosophila melanogaster. J Infect Dis 196(12):1860–1864. doi:10.1086/523765

    Article  PubMed  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743. doi:10.1146/annurev.immunol.25.022106.141615

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6):973–983

    Article  CAS  PubMed  Google Scholar 

  • Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B (2006) Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2(6):e56. doi:10.1371/journal.ppat.0020056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lionakis MS (2011) Drosophila and Galleria insect model hosts: new tools for the study of fungal virulence, pharmacology and immunology. Virulence 2(6):521–527. doi:10.4161/viru.2.6.18520

    Article  PubMed  PubMed Central  Google Scholar 

  • Lionakis MS, Kontoyiannis DP (2010) The growing promise of Toll-deficient Drosophila melanogaster as a model for studying Aspergillus pathogenesis and treatment. Virulence 1(6):488–499

    Article  PubMed  PubMed Central  Google Scholar 

  • Loh JM, Adenwalla N, Wiles S, Proft T (2013) Galleria mellonella larvae as an infection model for group A streptococcus. Virulence 4(5):419–428. doi:10.4161/viru.24930

    Article  PubMed  PubMed Central  Google Scholar 

  • Luther MK, Arvanitis M, Mylonakis E, LaPlante KL (2014) Activity of daptomycin or linezolid in combination with rifampin or gentamicin against biofilm-forming Enterococcus faecalis or E. faecium in an in vitro pharmacodynamic model using simulated endocardial vegetations and an in vivo survival assay using Galleria mellonella larvae. Antimicrob Agents Chemother 58(8):4612–4620. doi:10.1128/AAC.02790-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Mallo GV, Kurz CL, Couillault C, Pujol N, Granjeaud S, Kohara Y, Ewbank JJ (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12(14):1209–1214

    Article  CAS  PubMed  Google Scholar 

  • Manning L, Heckscher ES, Purice MD, Roberts J, Bennett AL, Kroll JR, Pollard JL, Strader ME, Lupton JR, Dyukareva AV, Doan PN, Bauer DM, Wilbur AN, Tanner S, Kelly JJ, Lai SL, Tran KD, Kohwi M, Laverty TR, Pearson JC, Crews ST, Rubin GM, Doe CQ (2012) A resource for manipulating gene expression and analyzing cis-regulatory modules in the Drosophila CNS. Cell Rep 2(4):1002–1013. doi:10.1016/j.celrep.2012.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh EK, May RC (2012) Caenorhabditis elegans, a model organism for investigating immunity. Appl Environ Microbiol 78(7):2075–2081. doi:10.1128/AEM.07486-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302(5651):1765–1768. doi:10.1126/science.1089035

    Article  CAS  PubMed  Google Scholar 

  • Muhammed M, Coleman JJ, Mylonakis E (2012) Caenorhabditis elegans: a nematode infection model for pathogenic fungi. Methods Mol Biol 845:447–454. doi:10.1007/978-1-61779-539-8_31

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee K, Hain T, Fischer R, Chakraborty T, Vilcinskas A (2013) Brain infection and activation of neuronal repair mechanisms by the human pathogen Listeria monocytogenes in the lepidopteran model host Galleria mellonella. Virulence 4(4):324–332. doi:10.4161/viru.23629

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulcahy H, Sibley CD, Surette MG, Lewenza S (2011) Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS Pathog 7(10):e1002299. doi:10.1371/journal.ppat.1002299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mylonakis E, Ausubel FM, Perfect JR, Heitman J, Calderwood SB (2002) Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc Natl Acad Sci U S A 99(24):15675–15680. doi:10.1073/pnas.232568599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mylonakis E, Idnurm A, Moreno R, El Khoury J, Rottman JB, Ausubel FM, Heitman J, Calderwood SB (2004) Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals. Mol Microbiol 54(2):407–419. doi:10.1111/j.1365-2958.2004.04310.x

    Article  CAS  PubMed  Google Scholar 

  • Mylonakis E, Moreno R, El Khoury JB, Idnurm A, Heitman J, Calderwood SB, Ausubel FM, Diener A (2005) Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 73(7):3842–3850. doi:10.1128/IAI.73.7.3842-3850.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Velasco GY, Prados-Rosales RC, Ortiz-Urquiza A, Quesada-Moraga E, Di Pietro A (2011) Galleria mellonella as model host for the trans-kingdom pathogen Fusarium oxysporum. Fungal Genet Biol 48(12):1124–1129. doi:10.1016/j.fgb.2011.08.004

    Article  PubMed  Google Scholar 

  • Nehme NT, Liegeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, Ewbank JJ, Ferrandon D (2007) A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog 3(11):e173. doi:10.1371/journal.ppat.0030173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Quinn AL, Wiegand EM, Jeddeloh JA (2001) Burkholderia pseudomallei kills the nematode Caenorhabditis elegans using an endotoxin-mediated paralysis. Cell Microbiol 3(6):381–393

    Article  PubMed  Google Scholar 

  • Okoli I, Coleman JJ, Tampakakis E, An WF, Holson E, Wagner F, Conery AL, Larkins-Ford J, Wu G, Stern A, Ausubel FM, Mylonakis E (2009) Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay. PLoS One 4(9):e7025. doi:10.1371/journal.pone.0007025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsen RJ, Watkins ME, Cantu CC, Beres SB, Musser JM (2011) Virulence of serotype M3 Group A Streptococcus strains in wax worms (Galleria mellonella larvae). Virulence 2(2):111–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63(2):411–436. doi:10.1124/pr.110.003293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg AY, Tampakakis E, Fuchs BB, Eliopoulos GM, Moellering RC Jr, Mylonakis E (2008) Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci U S A 105(38):14585–14590. doi:10.1073/pnas.0805048105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer BD, Jenett A, Hammonds AS, Ngo TT, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR, Mungall C, Svirskas R, Kadonaga JT, Doe CQ, Eisen MB, Celniker SE, Rubin GM (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A 105(28):9715–9720. doi:10.1073/pnas.0803697105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer BD, Ngo TT, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186(2):735–755. doi:10.1534/genetics.110.119917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilatova M, Dionne MS (2012) Burkholderia thailandensis is virulent in Drosophila melanogaster. PLoS One 7(11):e49745. doi:10.1371/journal.pone.0049745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole RJ, Bashllari E, Cochella L, Flowers EB, Hobert O (2011) A genome-wide RNAi screen for factors involved in neuronal specification in Caenorhabditis elegans. PLoS Genet 7(6):e1002109. doi:10.1371/journal.pgen.1002109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pujol N, Zugasti O, Wong D, Couillault C, Kurz CL, Schulenburg H, Ewbank JJ (2008) Anti-fungal innate immunity in C elegans is enhanced by evolutionary diversification of antimicrobial peptides. PLoS Pathog 4(7):e1000105. doi:10.1371/journal.ppat.1000105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E (2009) Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot Cell 8(11):1750–1758. doi:10.1128/EC.00163-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pukkila-Worley R, Ausubel FM, Mylonakis E (2011) Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog 7(6):e1002074. doi:10.1371/journal.ppat.1002074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riddle DL, Blumenthal T, Meyer BJ, Priess JR (1997) Introduction to C. elegans. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Roeder T, Stanisak M, Gelhaus C, Bruchhaus I, Grotzinger J, Leippe M (2010) Caenopores are antimicrobial peptides in the nematode Caenorhabditis elegans instrumental in nutrition and immunity. Dev Comp Immunol 34(2):203–209. doi:10.1016/j.dci.2009.09.010

    Article  CAS  PubMed  Google Scholar 

  • Ryder E, Ashburner M, Bautista-Llacer R, Drummond J, Webster J, Johnson G, Morley T, Chan YS, Blows F, Coulson D, Reuter G, Baisch H, Apelt C, Kauk A, Rudolph T, Kube M, Klimm M, Nickel C, Szidonya J, Maroy P, Pal M, Rasmuson-Lestander A, Ekstrom K, Stocker H, Hugentobler C, Hafen E, Gubb D, Pflugfelder G, Dorner C, Mechler B, Schenkel H, Marhold J, Serras F, Corominas M, Punset A, Roote J, Russell S (2007) The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 177(1):615–629. doi:10.1534/genetics.107.076216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu JH, Ha EM, Lee WJ (2010) Innate immunity and gut-microbe mutualism in Drosophila. Dev Comp Immunol 34(4):369–376. doi:10.1016/j.dci.2009.11.010

    Article  CAS  PubMed  Google Scholar 

  • Salzet M (2001) Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol 22(6):285–288

    Article  CAS  PubMed  Google Scholar 

  • Seed KD, Dennis JJ (2008) Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Infect Immun 76(3):1267–1275. doi:10.1128/IAI.01249-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinzawa N, Nelson B, Aonuma H, Okado K, Fukumoto S, Miura M, Kanuka H (2009) p38 MAPK-dependent phagocytic encapsulation confers infection tolerance in Drosophila. Cell Host Microbe 6(3):244–252. doi:10.1016/j.chom.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  • Shiratsuchi A, Mori T, Sakurai K, Nagaosa K, Sekimizu K, Lee BL, Nakanishi Y (2012) Independent recognition of Staphylococcus aureus by two receptors for phagocytosis in Drosophila. J Biol Chem 287(26):21663–21672. doi:10.1074/jbc.M111.333807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sifri CD, Mylonakis E, Singh KV, Qin X, Garsin DA, Murray BE, Ausubel FM, Calderwood SB (2002) Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice. Infect Immun 70(10):5647–5650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinert M, Leippe M, Roeder T (2003) Surrogate hosts: protozoa and invertebrates as models for studying pathogen-host interactions. Int J Med Microbiol 293(5):321–332. doi:10.1078/1438-4221-00275

    Article  PubMed  Google Scholar 

  • Tampakakis E, Okoli I, Mylonakis E (2008) A C. elegans-based, whole animal, in vivo screen for the identification of antifungal compounds. Nat Protoc 3(12):1925–1931. doi:10.1038/nprot.2008.193

    Article  CAS  PubMed  Google Scholar 

  • Tan MW, Mahajan-Miklos S, Ausubel FM (1999a) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A 96(2):715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM (1999b) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A 96(5):2408–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira N, Varahan S, Gorman MJ, Palmer KL, Zaidman-Remy A, Yokohata R, Nakayama J, Hancock LE, Jacinto A, Gilmore MS, de Fatima Silva Lopes M (2013) Drosophila host model reveals new enterococcus faecalis quorum-sensing associated virulence factors. PLoS One 8(5):e64740. doi:10.1371/journal.pone.0064740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomaz L, Garcia-Rodas R, Guimaraes AJ, Taborda CP, Zaragoza O, Nosanchuk JD (2013) Galleria mellonella as a model host to study Paracoccidioides lutzii and Histoplasma capsulatum. Virulence 4(2):139–146. doi:10.4161/viru.23047

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzou P, Ohresser S, Ferrandon D, Capovilla M, Reichhart JM, Lemaitre B, Hoffmann JA, Imler JL (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13(5):737–748

    Article  CAS  PubMed  Google Scholar 

  • Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P, Boccard F, Lemaitre B (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci U S A 102(32):11414–11419. doi:10.1073/pnas.0502240102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel H, Altincicek B, Glockner G, Vilcinskas A (2011) A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 12:308. doi:10.1186/1471-2164-12-308

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner C, Isermann K, Fehrenbach H, Roeder T (2008) Molecular architecture of the fruit fly’s airway epithelial immune system. BMC Genomics 9:446. doi:10.1186/1471-2164-9-446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner C, Isermann K, Roeder T (2009) Infection induces a survival program and local remodeling in the airway epithelium of the fly. FASEB J 23(7):2045–2054. doi:10.1096/fj.08-114223

    Article  CAS  PubMed  Google Scholar 

  • Walker KA, Maltez VI, Hall JD, Vitko NP, Miller VL (2013) A phenotype at last: essential role for the Yersinia enterocolitica Ysa type III secretion system in a Drosophila melanogaster S2 cell model. Infect Immun 81(7):2478–2487. doi:10.1128/IAI.01454-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wand ME, Muller CM, Titball RW, Michell SL (2011) Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol 11(1):11. doi:10.1186/1471-2180-11-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanos ME, Bennett CF, Kaeberlein M (2012) Genome-wide RNAi longevity screens in Caenorhabditis elegans. Curr Genomics 13(7):508–518. doi:10.2174/138920212803251391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all members of our research lab and the DFG and the BMBF for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Roeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fink, C., Roeder, T. (2016). How Well Do Surrogate Hosts Serve as Model Systems for Understanding Pathogenicity. In: Hurst, C. (eds) The Rasputin Effect: When Commensals and Symbionts Become Parasitic. Advances in Environmental Microbiology, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-28170-4_1

Download citation

Publish with us

Policies and ethics