Skip to main content

High-Dimensional Models: Structuring and Selection of Predictors

  • Chapter
  • First Online:
Modeling Discrete Time-to-Event Data

Part of the book series: Springer Series in Statistics ((SSS))

  • 3517 Accesses

Abstract

In this chapter we consider strategies to select the relevant variables in cases where many explanatory variables are available. The aim is to select the relevant ones in order to obtain a reduced time-to-event model that is easier to interpret than a big model with a multitude of covariates. In addition to interpretability issues, variable selection typically improves prediction accuracy, which is known to suffer if many irrelevant variables are included in the model. This is particularly important in regard to model fitting in high-dimensional situations where the number of predictors exceeds the number of observations. In this chapter we consider regularization methods, which have become a state-of-the art tool for variable selection especially in high-dimensional settings. In Sect. 7.1 we present penalized regression techniques for discrete survival models, which filter out irrelevant variables by imposing penalties on the respective covariate effects during maximum likelihood estimation. In Sect. 7.2 we consider gradient boosting techniques, which not only originate in the machine learning field but also serve as a regularization method to carry out variable selection and model choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrier, A., Boelle, P.-Y., Roser, F., Gregg, J., Tse, C., Brault, D., et al. (2006). Stage II colon cancer prognosis prediction by tumor gene expression profiling. Journal of Clinical Oncology, 24, 4685–4691.

    Article  Google Scholar 

  • Bender, H., & Schumacher, M. (2008). Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models. BMC Bioinformatics, 9, 14.

    Article  Google Scholar 

  • Boulesteix, A.-L., & Hothorn, T. (2010). Testing the additional predictive value of high-dimensional data. BMC Bioinformatics, 11, 78.

    Article  Google Scholar 

  • Boulesteix, A.-L., & Sauerbrei, W. (2011). Added predictive value of high-throughput molecular data to clinical data and its validation. Briefings in Bioinformatics, 12, 215–229.

    Article  Google Scholar 

  • Breheny, P. (2015). grpreg: Regularization paths for regression models with grouped covariates. R package version 2.8-1. http://cran.r-project.org/web/packages/grpreg/index.html

    Google Scholar 

  • Bühlmann, P. (2006). Boosting for high-dimensional linear models. Annals of Statistics, 34, 559–583.

    Article  MathSciNet  MATH  Google Scholar 

  • Bühlmann, P., Gertheiss, J., Hieke, S., Kneib, T., Ma, S., Schumacher, M., et al. (2014). Discussion of “The evolution of boosting algorithms” and “Extending statistical boosting”. Methods of Information in Medicine, 53, 436–445.

    Article  Google Scholar 

  • Bühlmann, P., & Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting (with discussion). Statistical Science, 22, 477–505.

    Article  MathSciNet  MATH  Google Scholar 

  • Bühlmann, P., & Yu, B. (2003). Boosting with the L2 loss: Regression and classification. Journal of the American Statistical Association, 98, 324–339.

    Article  MathSciNet  MATH  Google Scholar 

  • Candes, E., & Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics, 35, 2313–2351.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantoni, E., Flemming, J. M., & Ronchetti, E. (2011). Variable selection in additive models by non-negative garrote. Statistical modelling, 11, 237–252.

    Article  MathSciNet  Google Scholar 

  • Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348–1360.

    Article  MathSciNet  MATH  Google Scholar 

  • Frank, I. E., & Friedman, J. H. (1993). A statistical view of some chemometrics regression tools (with discussion). Technometrics, 35, 109–148.

    Article  MATH  Google Scholar 

  • Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Proceedings of the Thirteenth International Conference on Medicine Learning (pp. 148–156). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2015). glmnet: Lasso and elastic-net regularized generalized linear models. R package version 2.0-2. http://cran.r-project.org/web/packages/glmnet/

  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29, 1189–1232.

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28, 337–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Goeman, J., Meijer, R., & Chaturvedi, N. (2014). penalized: L1 (lasso and fused lasso) and L2 (ridge) penalized estimation in GLMs and in the Cox model. R package version 0.9-45. http://cran.r-project.org/web/packages/penalized/index.html

  • Hofner, B., Mayr, A., Robinzonov, N., & Schmid, M. (2014). Model-based boosting in R: A hands-on tutorial using the R package mboost. Computational Statistics, 29, 3–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., & Hofner, B. (2015). mboost: Model-based boosting. R package version 2.5-0. http://cran.r-project.org/web/packages/mboost/

  • James, G. M., & Radchenko, P. (2009). A generalized Dantzig selector with shrinkage tuning. Biometrika, 96, 323–337.

    Article  MathSciNet  MATH  Google Scholar 

  • Marra, G., & Wood, S. N. (2011). Practical variable selection for generalized additive models. Computational Statistics & Data Analysis, 55, 2372–2387.

    Article  MathSciNet  MATH  Google Scholar 

  • Mayr, A., Binder, H., Gefeller, O., & Schmid, M. (2014a). The evolution of boosting algorithms (with discussion). Methods of Information in Medicine, 53, 419–427.

    Article  Google Scholar 

  • Mayr, A., Binder, H., Gefeller, O., & Schmid, M. (2014b). Extending statistical boosting (with discussion). Methods of Information in Medicine, 53, 428–435.

    Article  Google Scholar 

  • Mayr, A., & Schmid, M. (2014). Boosting the concordance index for survival data – a unified framework to derive and evaluate biomarker combinations. PLoS One, 9(1), e84483.

    Article  MathSciNet  Google Scholar 

  • Meier, L. (2015). grplasso: Fitting user specified models with Group Lasso penalty. R package version 0.4-5. http://cran.r-project.org/web/packages/grplasso/index.html

  • Meier, L., van de Geer, S., & Bühlmann, P. (2008). The group lasso for logistic regression. Journal of the Royal Statistical Society, Series B, 70, 53–71.

    Article  MathSciNet  MATH  Google Scholar 

  • Schmid, M., & Hothorn, T. (2008). Boosting additive models using component-wise P-splines. Computational Statistics & Data Analysis, 53, 298–311.

    Article  MathSciNet  MATH  Google Scholar 

  • Schmid, M., Hothorn, T., Maloney, K. O., Weller, D. E., & Potapov, S. (2011). Geoadditive regression modeling of stream biological condition. Environmental and Ecological Statistics, 18, 709–733.

    Article  MathSciNet  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.

    MathSciNet  MATH  Google Scholar 

  • Tutz, G., & Binder, H. (2006). Generalized additive modeling with implicit variable selection by likelihood-based boosting. Biometrics, 62, 961–971.

    Article  MathSciNet  MATH  Google Scholar 

  • van de Vijver, M. J., He, Y. D., van’t Veer, L. J., Dai, H., Hart, A. A. M., Voskuil, D. W., et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. New England Journal of Medicine, 347, 1999–2009.

    Article  Google Scholar 

  • Wang, H., & Leng, C. (2008). A note on adaptive group lasso. Computational Statistics & Data Analysis, 52, 5277–5286.

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68, 49–67.

    Article  MathSciNet  MATH  Google Scholar 

  • Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101, 1418–1429.

    Article  MathSciNet  MATH  Google Scholar 

  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, 67, 301–320.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tutz, G., Schmid, M. (2016). High-Dimensional Models: Structuring and Selection of Predictors. In: Modeling Discrete Time-to-Event Data. Springer Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-28158-2_7

Download citation

Publish with us

Policies and ethics