Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Modeling Discrete Time-to-Event Data

Part of the book series: Springer Series in Statistics ((SSS))

Abstract

Basic concepts of the modeling of discrete time-to-event data are considered. In particular the discrete hazard or intensity function, which represents the conditional probability that an event occurs at time t given it has not yet occurred, is introduced. Another feature that makes modeling time-to-event data special is censoring, which means that the exact time of the occurrence of an event is not known. Although it is natural to consider time as a continuous variable, observations frequently are on a discrete time scale, either because measurements are intrinsically discrete or because observations are available only in a grouped form. Several examples are given that are used in later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, P. K., Borgan, O., Gill, R., & Keiding, N. (1993). Statistical models based on counting processes. New York/Berlin: Springer.

    Book  MATH  Google Scholar 

  • Box-Steffensmeier, J. M., & Jones, B. S. (2004). Event history modeling: A guide for social scientists. New York: Cambridge University Press.

    Book  Google Scholar 

  • Brüderl, J., Preisendörfer, P., & Ziegler, R. (1992). Survival chances of newly founded business organizations. American Sociological Review, 57, 227–242.

    Article  Google Scholar 

  • Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: Methods and applications. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Croissant, Y. (2015). Ecdat: Data sets for econometrics. R package version 0.2-9. http://cran.r-project.org/web/packages/Ecdat/index.html

  • Fleming, T. R., & Harrington, D. P. (2011). Counting processes and survival analysis. New York: Wiley.

    MATH  Google Scholar 

  • Gerds, T. A. (2015). pec: Prediction error curves for survival models. R package version 2.4.7. http://cran.r-project.org/web/packages/pec/

    Google Scholar 

  • Hastie, T., & Tibshirani, R. (1990). Generalized additive models. London: Chapman & Hall.

    MATH  Google Scholar 

  • Huinink, J., Brüderl, J., Nauck, B., Walper, S., Castiglioni, L., & Feldhaus, M. (2011). Panel analysis of intimate relationships and family dynamics (pairfam): Conceptual framework and design. Journal of Family Research, 23, 77–101.

    Google Scholar 

  • Jenkins, S. P. (2004). Survival analysis. Unpublished manuscript, Institute for Social and Economic Research, University of Essex. http://www.iser.essex.ac.uk/teaching/degree/stephenj/ec968/pdfs/ec968lnotesv6.pdf

  • Joergensen, H. S., Nakayama, H., Reith, J., Raaschou, H. O., & Olsen, T. S. (1996). Acute stroke with atrial fibrillation - the Copenhagen Stroke Study. Stroke, 27, 1765–1769.

    Article  Google Scholar 

  • Jones, B. (1994). A Longitudinal Perspective on Congressional Elections. Ph.D. thesis, State University of New York at Stony Brook.

    Google Scholar 

  • Kalbfleisch, J. D., & Prentice, R. L. (2002). The statistical analysis of failure time data (2nd ed.). New York: Wiley.

    Book  MATH  Google Scholar 

  • Klein, J. P., & Moeschberger, M. L. (2003). Survival analysis: Statistical methods for censored and truncated data (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Lancaster, T. (1992). The econometric analysis of transition data. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Lawless, J. F. (1982). Statistical models and methods for lifetime data. New York: Wiley.

    MATH  Google Scholar 

  • McCall, B. P. (1996). Unemployment insurance rules, joblessness, and part-time work. Econometrica, 64, 647–682.

    Article  MATH  Google Scholar 

  • Nauck, B., Brüderl, J., Huinink, J., & Walper, S. (2013). The German Family Panel (pairfam). GESIS Data Archive, Cologne. ZA5678 Data file Version 4.0.0. doi:10.4232/pairfam.5678.4.0.0.

    Google Scholar 

  • Scheike, T., & Jensen, T. (1997). A discrete survival model with random effects: An application to time to pregnancy. Biometrics, 53, 318–329.

    Article  MATH  Google Scholar 

  • Welchowski, T., & Schmid, M. (2015). discSurv: Discrete time survival analysis. R package version 1.1.1. http://cran.r-project.org/web/packages/discSurv

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tutz, G., Schmid, M. (2016). Introduction. In: Modeling Discrete Time-to-Event Data. Springer Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-28158-2_1

Download citation

Publish with us

Policies and ethics