Skip to main content

Switched-Mode High Frequency Stimulator Design

  • Chapter
  • First Online:
Design of Efficient and Safe Neural Stimulators

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 896 Accesses

Abstract

This chapter presents a neural stimulator system that employs a fundamentally different way of stimulating neural tissue compared to classical constant current stimulation. It uses the concept of switched-mode duty cycled stimulation as introduced in Chap. 4: a stimulation pulse is composed of a sequence of current pulses injected at a frequency of 1 MHz for which the duty cycle is used to control the stimulation intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonham, B.H., Litvak, L.M.: Current focusing and steering: modeling, physiology and psychophysics. Hear. Res. 242(1–2), 141–153 (2008)

    Article  Google Scholar 

  2. Noorsal, E., Sooksood, K., Xu, H., Hornig, R., Becker, J., Ortmanns, M.: A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants. IEEE J. Solid State Circuits 47(1), 244–256 (2012)

    Article  Google Scholar 

  3. Lo, Y.K., Chen, K., Liu, W.: A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses. IEEE Trans. Biomed. Circuits Syst. 7(6), 761–772 (2013)

    Article  Google Scholar 

  4. Chen, K., Yang, Z., Hoang, L., Weiland, J., Humayun, M., Liu, W.: An integrated 256-channel epiretinal prosthesis. IEEE J. Solid-State Circuit 45(9), 1946–1956 (2010)

    Article  Google Scholar 

  5. Veraart, C., Grill, W.M., Mortimer, T.: Selective control of muscle activation with a multipolar nerve cuff electrode. IEEE Trans. Biomed. Eng. 40(7), 640–653 (1993)

    Article  Google Scholar 

  6. Martens, H.C.F, Toader, E., Decré, M.M.J., Anderson, D.J., Vetter, R., Kipke, D.R., Bakker, K.B., Johnson, M.D., Vitek, J.K.: Spatial steering of deep brain stimulation volumes using a novel lead design. Clin. Neurophysiol. 122-3, 558–566 (2011)

    Google Scholar 

  7. Valente, V., Demosthenous, A., Bayford, R.: A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation. IEEE Trans. Biomed. Circuits Syst. 6(3), 197–207 (2012)

    Article  Google Scholar 

  8. Sooksood, K., Noorsal, E., Bihr, U., Ortmanns, M.: Recent advances in power efficient output stage for high density implantable stimulators. 2012 IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBS), pp. 855–858 (2012)

    Google Scholar 

  9. Williams, I., Constandinou, T.G.: An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Trans. Biomed. Circuits Syst. 7(2), 129–139 (2013)

    Article  Google Scholar 

  10. van Dongen, M.N., Serdijn, W.A.: A power-efficient multichannel neural stimulator using high-frequency pulsed excitation from an unfiltered dynamic supply. IEEE Trans. Biomed. Circuits Syst. (2014). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6965660

    Google Scholar 

  11. Lee, H.N., Park, H., Ghovanloo, M.: A power-efficient wireless system with adaptive supply control for deep brain stimulation. IEEE J. Solid-State Circuits 48(9), 2203–2216 (2012)

    Article  Google Scholar 

  12. Randles, J.E.B.: Kinetics of rapid electrode reactions. Discuss. Faraday Soc. 1, 11–19 (1947)

    Article  Google Scholar 

  13. Butson, C.R., Maks, C.B., McIntyre, C.C.: Sources and effects of electrode impedance during deep brain stimulation. Clin. Neurophysiol. 117(2), 447–454 (2006)

    Article  Google Scholar 

  14. Cheung, T., Nuo, M., Hoffman, M., Katz, M., Kilbane, C., Alterman, R., Tagliati, M.: Longitudinal impedance variability in patients with chronically implanted DBS devices. Brain Stimul. 6, 746–751 (2013)

    Article  Google Scholar 

  15. Arfin, S.K., Sarpeshkar, R.: An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation. IEEE Trans. Biomed. Circuits Syst. 6(1), 1–14 (2012)

    Article  Google Scholar 

  16. van Dongen, M.N., Serdijn, W.A.: A switched-mode multichannel neural stimulator with a minimum number of external components. IEEE International Symposium on Circuits and Systems (ISCAS) (2013)

    Google Scholar 

  17. Malmivuo, J., Plonsey, R.: Bioelectromagnetism – Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York (1995)

    Book  Google Scholar 

  18. Kuncel, A.M., Grill, W.M.: Selection of stimulus parameters for deep brain stimulation. Clin. Neurophysiol. 115(11), 2431–2441 (2004)

    Article  Google Scholar 

  19. Slavin, K.V.: Peripheral nerve stimulation for neuropathic pain. Neurotherapeutics 5(1), 100–106 (2008)

    Article  Google Scholar 

  20. Sooksood, K, Stieglitz, T., Ortmanns, M.: An active approach for charge balancing in functional electrical stimulation. IEEE Trans. Biomed. Circuits Syst. 4(3), 162–170 (2010)

    Article  Google Scholar 

  21. Tan, M.T., Chang, J.S., Tong, Y.C.: A process-independent threshold voltage inverter-comparator for pulse width modulation applications. Proceedings of IEEE International Conference on Electronics, Circuits and Systems, vol. 3, pp. 1201–1204 (1999)

    Google Scholar 

  22. van Dongen, M.N., Serdijn, W.A.: Design of a low power 100 dB dynamic range integrator for an implantable neural stimulator. IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 158–161 (2010)

    Google Scholar 

  23. Sillay, K.A., Chen, J.C., Montgomery, E.B.: Long-term measurement of therapeutic electrode impedance in deep brain stimulation. Neuromodulation 13(3), 195–200 (2010)

    Article  Google Scholar 

  24. van Dongen, M.N., Hoebeek, F.E., Koekoek, S.K.E., De Zeeuw, C.I., Serdijn, W.A.: High frequency switched-mode stimulation can evoke postsynaptic responses in cerebellar principal neurons. Front. Neuroengineering 8(2) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Dongen, M., Serdijn, W. (2016). Switched-Mode High Frequency Stimulator Design. In: Design of Efficient and Safe Neural Stimulators. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-28131-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28131-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28129-2

  • Online ISBN: 978-3-319-28131-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics