Skip to main content

Design of an Arbitrary Waveform Charge Balanced Stimulator

  • Chapter
  • First Online:
  • 883 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

This chapter discusses the design of an arbitrary waveform, charge balanced biphasic stimulator. The philosophy behind the system is to give the user full flexibility in the choice for the stimulation waveform, while the safety is ensured by implementing a charge balance mechanism. As discussed in Chap. 5 the stimulation waveform can benefit from the complex dynamics of the axon membrane in order to induce recruitment in a more efficient way. Furthermore, burst stimulation can be considered to be a special stimulation waveform as well, which has also shown to have advantages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xiang, F., Wills, J., Granacki, J., LaCoss, J., Arakelian, A., Weiland, J.: Novel charge-metering stimulus amplifier for biomimetic implantable prosthesis. IEEE International Symposium on Circuits and Systems, pp. 569–572 (2007)

    Google Scholar 

  2. van Dongen, M.N., Serdijn, W.A.: Design of a versatile voltage based output stage for implantable neural stimulators. IEEE First Latin American Symposium on Circuits and Systems (2010)

    Google Scholar 

  3. Noorsal, E., Sooksood, K., Xu, H., Hornig, R., Becker, J., Ortmanns, M.: A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants. IEEE J. Solid-State Circuits 47(1), 244–256 (2012)

    Article  Google Scholar 

  4. Sawigun, C., Ngamkham, W., van Dongen, M.N., Serdijn, W.A.: A least-voltage drop high output resistance current source for neural stimulation. IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 110–113 (2010)

    Google Scholar 

  5. van Dongen, M.N., Serdijn, W.A.: Design of a low power 100 dB dynamic range integrator for an implantable neural stimulator. IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 158–161 (2010)

    Google Scholar 

  6. Tan, M.T., Chang, J.S., Tong, Y.C.: A process-independent threshold voltage inverter-comparator for pulse width modulation applications. Proceedings of IEEE International Conference on Electronics, Circuits and Systems, vol. 3, pp. 1201–1204 (1999)

    Google Scholar 

  7. Site, J.J., Sarpeshkar, R.: A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6 nA DC error for 1-mA full-scale stimulation. IEEE Trans. Biomed. Circuits Syst. 1(3), 172–183 (2007)

    Article  Google Scholar 

  8. Langguth, B., Kreuzer, P.M., Kleinjung, T., Ridder, D. De: Tinnitus: causes and clinical management. Lancet Neurol. 12(9), 920–930 (2013)

    Article  Google Scholar 

  9. Schecklmann, M., Vielsmeier, V., Steffens, T., Landgrebe, M., Langguth, B., Kleinjung, T.: Relationship between audiometric slope and tinnitus pitch in tinnitus patients: insights into the mechanisms of tinnitus generation. PLoS One 7(4) (2012)

    Google Scholar 

  10. Norea, A.J., Eggermont, J.J.: Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J. Neurosci. 25(3), 699–705 (2005)

    Article  Google Scholar 

  11. Vanneste, S., van Dongen, M.N., De Vree, B., Hiseni, S., van der Velden, E., Strydis, C., Joos, K., Norena, A., Serdijn, W.A., De Ridder, D.: Does enriched acoustic environment in humans abolish chronic tinnitus clinically and electrophysiologically? A double blind placebo controlled study. Hear. Res. 296, 141–148 (2013)

    Google Scholar 

  12. Knutson, B., Cooper, J.C.: Functional magnetic resonance imaging of reward prediction. Curr. Opin. Neurol. 18(4), 411–417 (2005)

    Article  Google Scholar 

  13. Matsumoto, M., Hikosaka, O.: Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007)

    Article  Google Scholar 

  14. De Ridder, D., Vanneste, S., Loo, E., van der Plazier, M., Menovsky, T., van de Heyning, P.: Burst stimulation of the auditory cortex: a new form of neurostimulation for noise-like tinnitus suppression. Br. J. Neurosurg. 112(6), 1289–1294 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Dongen, M., Serdijn, W. (2016). Design of an Arbitrary Waveform Charge Balanced Stimulator. In: Design of Efficient and Safe Neural Stimulators. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-28131-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28131-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28129-2

  • Online ISBN: 978-3-319-28131-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics