Skip to main content

System Design of Neural Stimulators

  • Chapter
  • First Online:
  • 921 Accesses

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

This chapter discusses several system aspects for the design of neural stimulator circuits and provides a framework to compare such designs in general. Throughout the chapter, a comparison is made between the neural stimulator designs that are to be discussed in more detail in Chaps. 6 and 7. Both designs have been created with a different application in mind and this chapter discusses the consequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Marchand, S., Charest, J., Li, J., Chenard, J.R., Lavignolle, B., Laurencelle, L.: Is TENS purely a placebo effect? A controlled study on chronic low back pain. Pain 54(1), 99–106 (1993)

    Google Scholar 

  2. Deyo, R.A., Walsh, N.E., Martin, D.C., Schoenfeld, L.S., Ramamurthy, S.: A controlled trial of transcutaneous electrical nerve stimulation (TENS) and exercise for chronic low back pain. N. Engl. J. Med. 322(23), 1627–1634 (1990)

    Article  Google Scholar 

  3. Noorsal, E., Sooksood, K., Xu, H., Hornig, R., Becker, J., Ortmanns, M.: A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants. IEEE J. Solid State Circuits 47(1), 244–256 (2012)

    Article  Google Scholar 

  4. Arfin, S.K., Sarpeshkar, R.: An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation. IEEE Trans. Biomed. Circuits Syst. 6(1), 1–14 (2012)

    Article  Google Scholar 

  5. Ghovanloo, M.: Switched-capacitor based implantable low-power wireless microstimulating systems. Proceedings of the 2006 IEEE International Symposium on Circuits and Systems (2006)

    Google Scholar 

  6. Sahin, M., Tie, Y.: Non-rectangular waveforms for neural stimulation with practical electrodes. J. Neural Eng. 4(3), 227–233 (2007)

    Article  Google Scholar 

  7. Wongsarnpigoon, A., Grill, W.M.: Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm. J. Neural Eng. 7(4), 046009 (2010)

    Article  Google Scholar 

  8. Merrill, D.R., Bikson, M., Jefferys, J.G.R.: Electrical stimulation of excitable tissue – design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198 (2005)

    Article  Google Scholar 

  9. Hofmann, L., Ebert, M., Tass, P.A., Hauptmann, C.: Modified pulse shapes for effective neural stimulation. Front. Neuroengineering 4, 9 (2011)

    Article  Google Scholar 

  10. Berényi, A., Belluscio, M., Mao, D., Buzsáki, G.: Closed-loop control of epilepsy by transcranial electrical stimulation. Science 337, 735 (2012)

    Article  Google Scholar 

  11. Paz, J.T., Davidson, T.J., Frechette, E.S., Delord, B., Parada, I., Peng, K., Diesseroth, K. Huguenard, J.R.: Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16(1), 64–70 (2013)

    Article  Google Scholar 

  12. Chesterton, L.S., Foster, N.E., Wright, C.C., Baxter, G.D., Barlas, P.: Effects of TENS frequency, intensity and stimulation site parameter manipulation on pressure pain thresholds in healthy human subjects. Pain 106(1-2), 73–80 (2003)

    Article  Google Scholar 

  13. Kuncel, A.M., Grill, W.M.: Selection of stimulus parameters for deep brain stimulation. Clin. Neurophysiol. 115(11), 2431–2441 (2004)

    Article  Google Scholar 

  14. De Ridder, D., Vanneste, S., Loo, E. van der Plazier, M., Menovsky, T., van de Heyning, P.: Burst stimulation of the auditory cortex: a new form of neurostimulation for noise-like tinnitus suppression. J. Neurosurg. 112(6), 1289–1294 (2010)

    Google Scholar 

  15. Sooksood, K, Stieglitz, T., Ortmanns, M.: An active approach for charge balancing in functional electrical stimulation. IEEE Trans. Biomed. Circuits Syst. 4(3), 162–170 (2010)

    Article  Google Scholar 

  16. Constandinou, T.G., Georgiou, J., Toumazou, C.: A partial-current-steering biphasic stimulation driver for vestibular prostheses. IEEE Trans. Biomed. Circuits Syst. 2(2), 106–113 (2008)

    Article  Google Scholar 

  17. Techer, J.D., Bernard, S., Bertrand, Y., Cathebras, G., Guiraud, D.: New implantable stimulator for the FES of paralyzed muscles. Proceeding of the 30th European Solid-State Circuits Conference ESSCIRC, pp. 455–458 (2004)

    Google Scholar 

  18. Site, J.J., Sarpeshkar, R.: A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6 nA DC error for 1-mA full-scale stimulation. IEEE Trans. Biomed. Circuits Syst. 1(3), 172–183 (2007)

    Article  Google Scholar 

  19. Lee, E., Lam, A.: A matching technique for biphasic stimulation pulse. IEEE International Symposium on Circuits and Systems, pp. 817–820 (2007)

    Google Scholar 

  20. Xiang, F., Wills, J., Granacki, J., LaCoss, J., Arakelian, A., Weiland, J.: Novel charge-metering stimulus amplifier for biomimetic implantable prosthesis. IEEE International Symposium on Circuits and Systems, pp. 569–572 (2007)

    Google Scholar 

  21. van Dongen, M.N., Serdijn, W.A.: Design of a versatile voltage based output stage for implantable neural stimulators. IEEE First Latin American Symposium on Circuits and Systems (2010)

    Google Scholar 

  22. Ortmanns, M., Rocke, A., Gehrke, M., Teidtke, H.J.: A 232-channel epiretinal stimulator ASIC. IEEE J. Solid-State Circuits 42(12), 2946–2959 (2007)

    Article  Google Scholar 

  23. Bhatti, P.T., Wise, K.D.: A 32-site 4-channel high-density electrode array for a cochlear prosthesis. IEEE J. Solid-State Circuits 41(12), 2965–2973 (2006)

    Article  Google Scholar 

  24. Coulombe, J., Sawan, M., Gervais, J.F.: A highly flexible system for microstimulation of the visual cortex: design and implementation. IEEE Trans. Biomed. Circuits Syst. 1(4), 258–269 (2007)

    Article  Google Scholar 

  25. Sooksood, K., Noorsal, E., Bihr, U., Ortmanns, M.: Recent advances in power efficient output stage for high density implantable stimulators. 2012 IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBS), pp. 855–858 (2012)

    Google Scholar 

  26. Williams, I., Constandinou, T.G.: An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Trans. Biomed. Circuits Syst. 7(2), 129–139 (2013)

    Article  Google Scholar 

  27. Lee, H.N., Park, H., Ghovanloo, M.: A power-efficient wireless system with adaptive supply control for deep brain stimulation. IEEE J. Solid-State Circuits 48(9), 2203–2216 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Dongen, M., Serdijn, W. (2016). System Design of Neural Stimulators. In: Design of Efficient and Safe Neural Stimulators. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-28131-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28131-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28129-2

  • Online ISBN: 978-3-319-28131-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics