What Is a Derived Signature Morphism?

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9463)

Abstract

The notion of signature morphism is basic to the theory of institutions. It provides a powerful primitive for the study of specifications, their modularity and their relations in an abstract setting. The notion of derived signature morphism generalises signature morphisms to more complex constructions, where symbols may be mapped not only to symbols, but to arbitrary terms. The purpose of this work is to study derived signature morphisms in an institution-independent way. We will recall and generalize two known approaches to derived signature morphisms, introduce a third one, and discuss their pros and cons. We especially study the existence of colimits of derived signature morphisms. The motivation is to give an independent semantics to the notion of derived signature morphism, query and substitution in the context of the Distributed Ontology, Modeling and Specification Language DOL.

References

  1. 1.
  2. 2.
    Borzyszkowski, T.: Logical systems for structured specifications. Theor. Comput. Sci. 286, 197–245 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cornelius, F., Baldamus, M., Ehrig, H., Orejas, F.: Abstract and behaviour module specifications. Math. Struct. Comput. Sci. 9(1), 21–62 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Diaconescu, R.: Grothendieck institutions. Appl. Categorical Struct. 10, 383–402 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Diaconescu, R.: Herbrand theorems in arbitrary institutions. Inf. Process. Lett. 90, 29–37 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Diaconescu, R.: Institution-Independent Model Theory. Birkhäuser, Basel (2008)MATHGoogle Scholar
  7. 7.
    Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. In: Huet, G., Plotkin, G. (eds.) Proceedings of a Workshop on Logical Frameworks (1991)Google Scholar
  8. 8.
    Diskin, Z., Kadish, B.: A graphical yet formalized framework for specifying view systems. In: Manthey, R., Wolfengagen, V. (eds.) Advances in Databases and Information Systems 1997, Proceedings of the First East-European Symposium on Advances in Databases and Information Systems, ADBIS 1997, St Petersburg, 2–5 September 1997 (1997)Google Scholar
  9. 9.
    Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli categories. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol. 7212, pp. 163–177. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Ehrig, H., Baldamus, M., Cornelius, F., Orejas, F.: Theory of algebraic module specification including behavioral semantics and constraints. In: Nivat, M., Rattray, C., Rus, T., Scollo, G. (eds.) AMAST 1991. Workshops in Computing, pp. 145–172. Springer, Heidelberg (1992)Google Scholar
  11. 11.
    Ehrig, H., Baldamus, M., Orejas, F.: New concepts of amalgamation and extension for a general theory of specifications. In: Bidoit, M., Choppy, C. (eds.) Abstract Data Types 1991 and COMPASS 1991. LNCS, vol. 655. Springer, Heidelberg (1993) Google Scholar
  12. 12.
    Goguen, J.A., Burstall, R.M.: A study in the foundations of programming methodology: specifications, institutions, charters and parchments. In: Poigné, A., Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 313–333. Springer, Heidelberg (1986) CrossRefGoogle Scholar
  13. 13.
    Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and programming. J. Assoc. Comput. Mach. 39, 95–146 (1992). Predecessor in: LNCS, vol. 164, pp. 221–256 (1984)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Goguen, J.A., Roşu, G.: Institution morphisms. Formal Aspects Comput. 13, 274–307 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to the specification, correctness and implementation of abstract data types. In: Yeh, R.T. (ed.) Current Trends in Programming Methodology - vol. IV: Data Structuring, pp. 80–149. Prentice-Hall (1978)Google Scholar
  16. 16.
    Honsell, F., Longley, J., Sannella, D., Tarlecki, A.: Constructive data refinement in typed lambda calculus. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 161–176. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  17. 17.
    Kutz, O., Mossakowski, T., Lücke, D.: Carnap, goguen, and the hyperontologies: logical pluralism and heterogeneous structuring in ontology design. Log. Univers. 4(2), 255–333 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lack, S.: A 2-categories companion. In: Baez, J.C., May, J.P. (eds.) Towards Higher Categories. The IMA Volumes in Mathematics and its Applications, vol. 152, pp. 105–191. Springer, New York (2010)CrossRefGoogle Scholar
  19. 19.
    Mossakowski, T., Autexier, S., Hutter, D.: Development graphs - proof management for structured specifications. J. Logic Algebraic Program. 67(1–2), 114–145 (2006). http://www.sciencedirect.com/science?_ob=GatewayURL&_origin=CONTENTS&_method=citationSearch&_piikey=S1567832605000810&_version=1&md5=7c18897e9ffad42e0649c6b41203f41e
  20. 20.
    Sannella, D.T., Burstall, R.M.: Structured theories in LCF. In: Protasi, M., Ausiello, G. (eds.) CAAP 1983. LNCS, vol. 159, pp. 377–391. Springer, Heidelberg (1983) Google Scholar
  21. 21.
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. Monographs in Theoretical Computer Science. Springer, Berlin (2012) CrossRefMATHGoogle Scholar
  22. 22.
    Schröder, L., Mossakowski, T., Tarlecki, A., Klin, B., Hoffman, P.: Amalgamation in the semantics of casl. Theor. Comput. Sci. 331(1), 215–247 (2005)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Schwering, A., Krumnack, U., Kühnberger, K.U., Gust, H.: Syntactic principles of heuristic-driven theory projection. J. Cogn. Syst. Res. 10(3), 251–269 (2009). Special Issue on Analogies - Integrating Cognitive AbilitiesCrossRefGoogle Scholar
  24. 24.
    Szigeti, J.: On limits and colimits in the Kleisli category. Cahiers de Topologie et Géométrie Différentielle Catégoriques 24(4), 381–391 (1983)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Otto-von-Guericke University of MagdeburgMagdeburgGermany
  2. 2.University of OsnabrückOsnabrückGermany
  3. 3.McMaster UniversityHamiltonCanada

Personalised recommendations