On Logic Embeddings and Gödel’s God

  • Christoph Benzmüller
  • Bruno Woltzenlogel Paleo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9463)

Abstract

We have applied an elegant and flexible logic embedding approach to verify and automate a prominent philosophical argument: the ontological argument for the existence of God. In our ongoing computer-assisted study, higher-order automated reasoning tools have made some interesting observations, some of which were previously unknown.

References

  1. 1.
    Anderson, C.A.: Some emendations of Gödel’s ontological proof. Faith Philos. 7(3), 291–303 (1990)CrossRefGoogle Scholar
  2. 2.
    Anderson, C.A., Gettings, M.: Gödel ontological proof revisited. In: Gödel’96: Logical Foundations of Mathematics, Computer Science, and Physics: Lecture Notes in Logic 6, pages 167–172. Springer, (1996)Google Scholar
  3. 3.
    Benzmüller, C.: Automating quantified conditional logics in HOL. In: Proceedings of IJCAI 2013, pp. 746–753, Beijing, China (2013)Google Scholar
  4. 4.
    Benzmüller, C.: A top-down approach to combining logics. In: Proceedings of ICAART 2013, pp. 346–351. SciTePress Digital Library, Barcelona, Spain (2013)Google Scholar
  5. 5.
    Benzmüller, C., Paleo, B.W.: Gödel’s God in Isabelle/HOL. Arch. Formal Proofs (2013)Google Scholar
  6. 6.
    Benzmüller, C., Paleo, B.W.: Automating Gödel’s ontological proof of God’s existence with higher-order automated theorem provers. In: ECAI 2014. Frontiers in AI and Applications, vol. 263, pp. 163–168. IOS Press (2014)Google Scholar
  7. 7.
    Benzmüller, C., Weber, L., Paleo, B.W.: Computer-assisted analysis of the Anderson-Hájek ontological controversy. Handbook of the 1st World Congress on Logic and Religion, João Pessoa, Brazil (2015)Google Scholar
  8. 8.
    Benzmüller, C., Woltzenlogel Paleo, B.: Interacting with modal logics in the coq proof assistant. In: Beklemishev, L.D. (ed.) CSR 2015. LNCS, vol. 9139, pp. 398–411. Springer, Heidelberg (2015) Google Scholar
  9. 9.
    Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory. Logica Univers. (Spec. Issue Multimodal Logics) 7(1), 7–20 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Benzmüller, C.E., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - a cooperative automatic theorem prover for classical higher-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  11. 11.
    Bjørdal, F.: Understanding Gödel’s ontological argument. In: The Logica Yearbook 1998. Filosofia (1999)Google Scholar
  12. 12.
    Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  13. 13.
    Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5, 56–68 (1940)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Synthese Library, vol. 277. Kluwer, Dordrecht (1998) CrossRefMATHGoogle Scholar
  16. 16.
    Fitting, M.: Types, Tableaus, and Gödel’s God. Kluwer, Norwell (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Fuhrmann, A.: Existenz und Notwendigkeit – Kurt Gödels axiomatische Theologie. In: Logik in der Philosophie, Heidelberg (Synchron) (2005)Google Scholar
  18. 18.
    Gabbay, D.M.: Labelled Deductive Systems. Clarendon Press, Oxford (1996) MATHGoogle Scholar
  19. 19.
    Gödel, K.: Appx.A: notes in Kurt Gödel’s hand. In: [25], pp. 144–145 (2004)Google Scholar
  20. 20.
    Hajek, P.: A new small emendation of Gödel’s ontological proof. Stud. Logica: Int. J. Symbolic Logic 71(2), 149–164 (2002)CrossRefMATHGoogle Scholar
  21. 21.
    Hajek, P.: Ontological proofs of existence and non-existence. Stud. Logica: Int. J. Symbolic Logic 90(2), 257–262 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Oppenheimera, P.E., Zalta, E.N.: A computationally-discovered simplification of the ontological argument. Australas. J. Philos. 89(2), 333–349 (2011)CrossRefGoogle Scholar
  23. 23.
    Rushby, J.: The ontological argument in PVS. In: Proceedings of CAV Workshop “Fun With Formal Methods”, St. Petersburg, Russia (2013)Google Scholar
  24. 24.
    Scott, D.: Appx.B: notes in Dana Scott’s hand. In: [25], pp. 145–146 (2004)Google Scholar
  25. 25.
    Sobel, J.H.: Logic and Theism: Arguments for and Against Beliefs in God. Cambridge University Press, Cambridge (2004) Google Scholar
  26. 26.
    Stalnaker, R.C.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical Theory, pp. 98–112. Blackwell, Oxford (1968)Google Scholar
  27. 27.
    Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formalized Reasoning 3(1), 1–27 (2010)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Christoph Benzmüller
    • 1
  • Bruno Woltzenlogel Paleo
    • 2
  1. 1.Freie Universität BerlinBerlinGermany
  2. 2.Vienna Technical UniversityViennaAustria

Personalised recommendations