Skip to main content

The Snotty and the Stringy: Energy for Subsurface Life in Caves

  • Chapter
  • First Online:
Their World: A Diversity of Microbial Environments

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 1))

Abstract

Caves are subterranean environments that support life largely in the absence of light. Because caves are completely or almost completely removed from the photosynthetic productivity of the sunlit realm, most cave ecosystems are supported either by inputs of organic matter from the surface or by in situ sources of inorganic chemical energy. The majority of caves have very low energy and nutrient availability and thus, generally low biological activity and productivity. However, those caves that have abundant inorganic chemical energy or high organic carbon influx represent subterranean oases that support robust microbial communities and diverse animal life. In this chapter, we review the energy resources available to cave microbiota and describe several examples that illustrate the vast diversity of subsurface habits contained within caves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amend JP, Teske A (2005) Expanding frontiers in deep subsurface microbiology. Palaeogeogr Palaeocl 219(1):131–155

    Article  Google Scholar 

  • Anelli F, Graniti A (1967) Aspetti microbiologici nella genesi delle vermicolazioni argillose delle Grotte di Castellana (Murge di Bari). Le Grotte d‚ Italia Ser 4:131–138

    Google Scholar 

  • Angert ER, Northup DE, Reysenbach A-L, Peek AS, Goebel BM, Pace NR (1998) Molecular phylogenetic analysis of a bacterial community in Sulphur River, Parker Cave, Kentucky. Am Mineral 83:1583–1592

    Article  CAS  Google Scholar 

  • Azúa-Bustos A, González-Silva C, Mancilla R, Salas L, Palma R, Wynne J, McKay C, Vicuña R (2009) Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave. Microb Ecol 58(3):485–496

    Article  PubMed  Google Scholar 

  • Barton HA, Jurado V (2007) What’s up down there? Microbial diversity in caves. Microbe 3:132–138

    Google Scholar 

  • Barton HA, Taylor NM, Kreate MP, Springer AC, Oehrle SA, Bertog JL (2007) The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments. Int J Speleol 36(2):93–104

    Article  Google Scholar 

  • Bini A, Gori MC, Gori S (1978) A critical review of hypotheses on the origin of vermiculations. Int J Speleol 10(1):11–34

    Article  Google Scholar 

  • Blyth AJ, Frisia S (2008) Molecular evidence for bacterial mediation of calcite formation in cold high-altitude caves. Geomicrobiol J 25(2):101–111

    Article  CAS  Google Scholar 

  • Borsato A, Frisia S, Jones B, Van Der Borg K (2000) Calcite moonmilk: crystal morphology and environment of formation in caves in the Italian Alps. J Sediment Res 70(5):1179–1190

    Article  Google Scholar 

  • Boston P, Spilde M, Northup D, Melim L, Soroka D, Kleina L, Lavoie K, Hose L, Mallory L, Dahm C, Crossey L, Schelble R (2001) Cave biosignature suites: microbes, minerals, and Mars. Astrobiology 1(1):25–55

    Article  CAS  PubMed  Google Scholar 

  • Boston P, Curnutt J, Gomez E, Schubert K, Strader B (2009) Patterned growth in extreme environments. In: Proceedings of the third IEEE international conference on space mission challenges for information technology, Citeseer, pp 221–226

    Google Scholar 

  • Brigmon R, Martin H, Morris T, Bitton G, Zam S (1994) Biogeochemical ecology of Thiothrix spp. in underwater limestone caves. Geomicrobiol J 12(3):141–159

    Article  Google Scholar 

  • Bullen HA, Oehrle SA, Bennett AF, Taylor NM, Barton HA (2008) Use of attenuated total reflectance Fourier transform infrared spectroscopy to identify microbial metabolic products on carbonate mineral surfaces. Appl Environ Microbiol 74(14):4553–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacchio P, Contento R, Ercole C, Cappuccio G, Martinez MP, Lepidi A (2004) Involvement of microorganisms in the formation of carbonate speleothems in the Cervo Cave (L’Aquila-Italy). Geomicrobiol J 21(8):497–509

    Article  CAS  Google Scholar 

  • Camassa MM, Febbroriello P (2003) Le foval della grotta zinzulusa in Puglia (SE-Italia). Thalassia Salent 26:207–218

    Google Scholar 

  • Cañaveras J, Hoyos M, Sanchez-Moral S, Sanz-Rubio E, Bedoya J, Soler V, Groth I, Schumann P, Laiz L, Gonzalez I (1999) Microbial communities associated with hydromagnesite and needle-fiber aragonite deposits in a karstic cave (Altamira, Northern Spain). Geomicrobiol J 16(1):9–25

    Article  Google Scholar 

  • Cañaveras JV, Sloer C, Saiz-Jimenez J (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 18(3):223–240

    Article  Google Scholar 

  • Cañaveras J, Cuezva S, Sanchez-Moral S, Lario J, Laiz L, Gonzalez JM, Saiz-Jimenez C (2006) On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften 93(1):27–32

    Article  PubMed  CAS  Google Scholar 

  • Cardman Z, Macalady JL, Schaperdoth I, Broad K, Kakuk B (2015) Fast-growing slime curtains reveal a dynamic nitrogen (and iron?) world in the shallow subsurface. Geological Society of America Abstracts with Programs, Vol 47, No. 7, p 56

    Google Scholar 

  • Carmichael MJ, Carmichael SK, Santelli CM, Strom A, Bräuer SL (2013) Mn (II)-oxidizing bacteria are abundant and environmentally relevant members of ferromanganese deposits in caves of the upper Tennessee River Basin. Geomicrobiol J 30(9):779–800

    Article  CAS  Google Scholar 

  • Chen Y, Wu L, Boden R, Hillebrand A, Kumaresan D, Moussard H, Baciu M, Lu Y, Murrell JC (2009) Life without light: microbial diversity and evidence of sulfur-and ammonium-based chemolithotrophy in Movile Cave. ISME J 3(9):1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Chroňáková A, Horák A, Elhottová D, Krištůfek V (2009) Diverse archaeal community of a bat guano pile in Domica Cave (Slovak Karst, Slovakia). Folia Microbiol 54(5):436–446

    Article  CAS  Google Scholar 

  • Contos A, James J, Pitt BHK, Rogers P (2001) Morphoanalysis of bacterially precipitated subaqueous calcium carbonate from Weebubbie Cave, Australia. Geomicrobiol J 18(3):331–343

    Article  CAS  Google Scholar 

  • Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, Oxford

    Google Scholar 

  • Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62(1):11–17

    Google Scholar 

  • Cunningham K, Northup D, Pollastro R, Wright W, LaRock E (1995) Bacteria, fungi and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ Geol 25(1):2–8

    Article  Google Scholar 

  • Danielli H, Edington M (1983) Bacterial calcification in limestone caves. Geomicrobiol J 3(1):1–16

    Article  CAS  Google Scholar 

  • Dattagupta S, Schaperdoth I, Montanari A, Mariani S, Kita N, Valley JW, Macalady JL (2009) A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. ISME J 3(8):935–943

    Article  CAS  PubMed  Google Scholar 

  • Davis DG (2000) Extraordinary features of Lechuguilla Cave, Guadalupe Mountains, New Mexico. J Cave Karst Stud 62(2):147–157

    CAS  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13(9):429–438

    Article  CAS  PubMed  Google Scholar 

  • Engel AS (2010) Microbial diversity of cave ecosystems. In: Barton LL, Mandl M, Loy A (eds) Geomicrobiology. Molecular and Environmental Perspective. Springer, Netherlands, pp 219–238

    Chapter  Google Scholar 

  • Engel AS, Northup DE (2008) Caves and karst as model systems for advancing the microbial sciences. In: Martin JB, White WB (eds) Frontiers of Karst Research: Proceedings and recommendations of the workshop held May 3 through 5, 2007, in San Antonio, TX. Karst Waters Institute, Ashland, OH

    Google Scholar 

  • Engel AS, Randall KW (2011) Experimental evidence for microbially mediated carbonate dissolution from the saline water zone of the Edwards Aquifer, central Texas. Geomicrobiol J 28(4):313–327

    Article  Google Scholar 

  • Engel AS, Porter ML, Kinkle BK, Kane TC (2001) Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia. Geomicrobiol J 18(3):259–274

    Article  CAS  Google Scholar 

  • Engel AS, Lee N, Porter ML, Stern LA, Bennett PC, Wagner M (2003) Filamentous “Epsilonproteobacteria” dominate microbial mats from sulfidic cave springs. Appl Environ Microbiol 69(9):5503–5511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel AS, Stern LA, Bennett PC (2004) Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology 32(5):369–372

    Article  CAS  Google Scholar 

  • Engel AS, Meisinger DB, Porter ML, Payn RA, Schmid M, Stern LA, Schleifer K, Lee NM (2010) Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA). ISME J 4(1):98–110

    Article  PubMed  Google Scholar 

  • Engel AS, Paoletti MG, Beggio M, Dorigo L, Pamio A, Gomiero T, Furlan C, Brilli M, Dreon AL, Bertoni R (2013) Comparative microbial community composition from secondary 1 carbonate (moonmilk) deposits: implications for the Cansiliella servadeii cave hygropetric food web. Int J Speleol 42(3):181–192

    Article  Google Scholar 

  • Faimon J, Štelcl J, Kubešová S, Zimák J (2003) Environmentally acceptable effect of hydrogen peroxide on cave “lamp-flora”, calcite speleothems and limestones. Environ Pollut 122(3):417–422

    Article  CAS  PubMed  Google Scholar 

  • Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, West Sussex, England

    Book  Google Scholar 

  • Galdenzi S (1990) Un modello genetico per la Grotta Grande del Vento. In: Galdenzi S, Menichetti M (eds) Il carsismo della Gola di Frasassi: Memorie Istituto Italiano di Speologia, vol 4. vol 2, pp 123–142

    Google Scholar 

  • Galdenzi S, Maruoka T (2003) Gypsum deposits in the Frasassi Caves, central Italy. J Cave Karst Stud 65(2):111–125

    CAS  Google Scholar 

  • Galdenzi S, Sarbu S (2000) Chemiosintesi e speleogenesi in un ecosistema ipogeo: I Rami Sulfurei delle Grotte di Frasassi (Italia centrale). Le Grotte d’Italia 1:3–18

    Google Scholar 

  • Galdenzi S, Cocchioni F, Filipponi G, Morichetti L, Scuri S, Selvaggio R, Cocchioni M (2010) The sulfidic thermal caves of Acquasanta Terme (central Italy). J Cave Karst Stud 72(1):43–58

    Article  CAS  Google Scholar 

  • Giordano M, Mobili F, Pezzoni V, Hein MK, Davis JS (2000) Photosynthesis in the caves of Frasassi (Italy). Phycologia 39(5):384–389

    Article  Google Scholar 

  • Gradziński M, Banaś M, Uchman A (1995) Biogenic origin of manganese flowstones from Jaskinia Czarna Cave, Tatra Mts., Western Carpathians. Acta Soc Geol Pol 65:19–27

    Google Scholar 

  • Halliday WR (2007) Pseudokarst in the 21st century. J Cave Karst Stud 69(1):103–113

    Google Scholar 

  • Hathaway JJM, Garcia MG, Balasch MM, Spilde MN, Stone FD, Dapkevicius MDLN, Amorim IR, Gabriel R, Borges PA, Northup DE (2014) Comparison of bacterial diversity in Azorean and Hawai’ian lava cave microbial mats. Geomicrobiol J 31(3):205–220

    Article  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426(6964):344–352

    Article  CAS  PubMed  Google Scholar 

  • Hedges J (1993) A review on vermiculations. Bol Soc Venezolana Espeleol 27:2–6

    Google Scholar 

  • Hill C (1995) Sulfur redox reactions: hydrocarbons, native sulfur, Mississippi Valley-type deposits, and sulfuric acid karst in the Delaware Basin, New Mexico and Texas. Environ Geol 25(1):16–23

    Article  CAS  Google Scholar 

  • Hill CA, Forti P (1997) Cave minerals of the world, vol 238. National Speleological Society, Huntsville, AL

    Google Scholar 

  • Holmes AJ, Tujula NA, Holley M, Contos A, James JM, Rogers P, Gillings MR (2001) Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ Microbiol 3(4):256–264

    Article  CAS  PubMed  Google Scholar 

  • Hose L, Northup D (2004) Biovermiculations: living vermiculation-like deposits in Cueva de Villa Luz, Mexico: Proceedings of the Society: Selected Abstracts, National Speleological Society Convention, Marquette, MI. J Cave Karst Stud 66:112

    Google Scholar 

  • Hose LD, Pisarowicz JA (1999) Cueva de Villa Luz, Tabasco, Mexico: Reconnaissance study of an active sulfur spring cave and ecosystem. J Cave Karst Stud 61(1):13–21

    CAS  Google Scholar 

  • Hose LD, Palmer AN, Palmer MV, Northup DE, Boston PJ, DuChene HR (2000) Microbiology and geochemistry in a hydrogen-sulfide-rich karst environment. Chem Geol 169:399–423

    Article  CAS  Google Scholar 

  • Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6(2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Jones B (1992) Manganese precipitates in the karst terrain of Grand Cayman, British West Indies. Can J Earth Sci 29(6):1125–1139

    Article  CAS  Google Scholar 

  • Jones B (2001) Microbial activity in caves—a geological perspective. Geomicrobiol J 18(3):345–357

    Article  CAS  Google Scholar 

  • Jones B (2010) Microbes in caves: agents of calcite corrosion and precipitation. Geol Soc Lond, Spec Publ 336(1):7–30

    Article  CAS  Google Scholar 

  • Jones DS, Polerecky L, Dempsey BA, Galdenzi S, Macalady JL (2015) Fate of sulfide in the Frasassi cave system and implications for sulfuric acid speleogenesis. Chem Geol 410:21

    Article  CAS  Google Scholar 

  • Jones DS, Lyon EH, Macalady JL (2008) Geomicrobiology of biovermiculations from the Frasassi cave system, Italy. J Cave Karst Stud 70(2):78–93

    CAS  Google Scholar 

  • Jones D, Tobler D, Schaperdoth I, Mainiero M, Macalady J (2010) Community structure of subsurface biofilms in the thermal sulfidic caves of Acquasanta Terme, Italy. Appl Environ Microbiol 76(17):5902–5910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones D, Albrecht H, Dawson K, Schaperdoth I, Freeman K, Pi Y, Pearson A, Macalady J (2012) Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J 6(1):158–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DS, Schaperdoth I, Macalady JL (2014) Metagenomic evidence for sulfide oxidation in extremely acidic cave biofilms. Geomicrobiol J 31:194–204

    Article  CAS  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296:643–645

    Article  Google Scholar 

  • Laiz L, Groth I, Gonzalez I, Sáiz-Jiménez C (1999) Microbiological study of the dripping waters in Altamira cave (Santillana del Mar, Spain). J Microbiol Methods 36(1):129–138

    Article  CAS  PubMed  Google Scholar 

  • Lavoie K, Northup D (2009) Invertebrate colonization and deposition rates of guano in a man-made bat cave, the Chiroptorium, Texas USA. Int Cong Speleol Proc 2:1297–1301

    Google Scholar 

  • Lee NM, Meisinger DB, Aubrecht IR, Kovačik L, Saiz-Jimenez C, Baskar S, Baskar R, Liebl W, Porter ML, Engel AS (2012) Caves and Karst environments. In: Bell EM (ed) Life at extremes: environments, organisms, and strategies for survival, vol 1. CAB International, Oxfordshire, UK, pp 320–344

    Chapter  Google Scholar 

  • Léveillé RJ, Datta S (2010) Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: a review. Plan Space Sci 58(4):592–598

    Article  CAS  Google Scholar 

  • Lin L-H, Wang P-L, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Lollar BS, Brodie EL, Hazen TC, Andersen GL (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314(5798):479–482

    Article  CAS  PubMed  Google Scholar 

  • Lowe D, Gunn J (1995) The role of strong acid in speleo-inception and subsequent cave development. Acta Geographica 34:33–60

    Google Scholar 

  • Lyon E, Koffman B, Meyer K, Cleaveland L, Mariani S, Galdenzi S, Macalady J (2005) Geomicrobiology of the Frasassi Caves. In: Galdenzi S (ed) Frasassi 1989-2004: Gli sviluppi nella ricerca, pp 152–157

    Google Scholar 

  • Macalady JL, Lyon EH, Koffman B, Albertson LK, Meyer K, Galdenzi S, Mariani S (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 72(8):5596–5609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macalady JL, Jones DS, Lyon EH (2007) Extremely acidic, pendulous microbial biofilms from the Frasassi cave system, Italy. Environ Microbiol 9(6):1402–1414

    Article  CAS  PubMed  Google Scholar 

  • Macalady J, Jones D, Schaperdoth I, Bloom D, McCauley R (2008a) Meter-long microbial ropes from euxinic cave lakes. In: AGU Fall Meeting Abstracts, p 0514

    Google Scholar 

  • Macalady JL, Dattagupta S, Schaperdoth I, Jones DS, Druschel GK, Eastman D (2008b) Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME J 2(6):590–601

    Article  CAS  PubMed  Google Scholar 

  • Macalady JL, Hamilton TL, Grettenberger CL, Jones DS, Tsao LE, Burgos WD (2013) Energy, ecology and the distribution of microbial life. Phil Trans R Soc B 368(1622):20120383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mariani S, Mainiero M, Barchi M, Van Der Borg K, Vonhof H, Montanari A (2007) Use of speleologic data to evaluate Holocene uplifting and tilting: an example from the Frasassi anticline (northeastern Apennines, Italy). Earth Planet Sci Lett 257(1–2):313–328

    Article  CAS  Google Scholar 

  • McCauley R, Jones D, Schaperdoth I, Steinberg L, Macalady J (2010) Metabolic strategies in energy-limited microbial communities in the anoxic subsurface (Frasassi Cave System, Italy). In: AGU Fall Meeting Abstracts, p 0317

    Google Scholar 

  • Meisinger DB, Zimmermann J, Ludwig W, Schleifer KH, Wanner G, Schmid M, Bennett PC, Engel AS, Lee NM (2007) In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA). Environ Microbiol 9(6):1523–1534

    Article  CAS  PubMed  Google Scholar 

  • Melim LA (2011) Stable isotopic evidence for microbial precipitation of calcite in cave pool fingers. Geological Society of America Abstracts with Programs 43(5):329

    Google Scholar 

  • Melim LA, Shinglman KM, Boston PJ, Northup DE, Spilde MN, Queen JM (2001) Evidence for microbial involvement in pool finger precipitation, Hidden Cave, New Mexico. Geomicrobiol J 18(3):311–329

    Article  CAS  Google Scholar 

  • Melim LA, Northup DE, Spilde MN, Jones B, Boston PJ, Bixby RJ (2008) Reticulated filaments in cave pool speleothems: microbe or mineral? J Cave Karst Stud 70(3):135–141

    Google Scholar 

  • Melim L, Liescheidt R, Northup D, Spilde M, Boston P, Queen J (2009) A biosignature suite from cave pool precipitates, Cottonwood Cave, New Mexico. Astrobiology 9(9):907–917

    Article  CAS  PubMed  Google Scholar 

  • Montechiaro F, Giordano M (2006) Effect of prolonged dark incubation on pigments and photosynthesis of the cave-dwelling cyanobacterium Phormidium autumnale (Oscillatoriales, Cyanobacteria). Phycologia 45(6):704–710

    Article  Google Scholar 

  • Northup DE, Lavoie KH (2001) Geomicrobiology of caves: a review. Geomicrobiol J 18(3):199–222

    Article  CAS  Google Scholar 

  • Northup DE, Dahm CN, Melim LA, Spilde MN, Crossey LJ, Lavoie KH, Mallory LM, Boston PJ, Cunningham KI, Barns SM (2000) Evidence for geomicrobiological interactions in Guadalupe caves. J Cave Karst Stud 62(2):80–90

    CAS  Google Scholar 

  • Northup DE, Barns SM, Yu LE, Spilde MN, Schelble RT, Dano KE, Crossey LJ, Connolly CA, Boston PJ, Natvig DO (2003) Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ Microbiol 5(11):1071–1086

    Article  PubMed  Google Scholar 

  • Northup D, Melim L, Spilde M, Hathaway J, Garcia M, Moya M, Stone F, Boston P, Dapkevicius M, Riquelme C (2011) Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets. Astrobiology 11(7):601–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsi WD, Edgcomb VP, Christman GD, Biddle JF (2013) Gene expression in the deep biosphere. Nature 499(7457):205–208

    Article  CAS  PubMed  Google Scholar 

  • Ortiz M, Legatzki A, Neilson JW, Fryslie B, Nelson WM, Wing RA, Soderlund CA, Pryor BM, Maier RM (2014) Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME J 8(2):478–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103(1):1–21

    Article  Google Scholar 

  • Palmer AN (2007) Cave geology. Cave Books, Dayton, OH

    Google Scholar 

  • Pašić L, Kovče B, Sket B, Herzog‐Velikonja B (2010) Diversity of microbial communities colonizing the walls of a Karstic cave in Slovenia. FEMS Microbiol Ecol 71(1):50–60

    Article  PubMed  CAS  Google Scholar 

  • Peck S (1986) Bacterial deposition of iron and manganese oxides in North American caves. NSS Bull 48(1):26–30

    CAS  Google Scholar 

  • Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Popa R, Smith AR, Popa R, Boone J, Fisk M (2012) Olivine-respiring bacteria isolated from the rock-ice interface in a lava-tube cave, a Mars analog environment. Astrobiology 12(1):9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Por FD (2007) Ophel: a groundwater biome based on chemoautotrophic resources. The global significance of the Ayyalon cave finds. Israel Hydrobiol 592(1):1–10

    Article  CAS  Google Scholar 

  • Porca E, Jurado V, Žgur‐Bertok D, Saiz‐Jimenez C, Pašić L (2012) Comparative analysis of yellow microbial communities growing on the walls of geographically distinct caves indicates a common core of microorganisms involved in their formation. FEMS Microbiol Ecol 81(1):255–266

    Article  CAS  PubMed  Google Scholar 

  • Portillo MC, Gonzalez JM (2011) Moonmilk deposits originate from specific bacterial communities in Altamira Cave (Spain). Microb Ecol 61(1):182–189

    Article  PubMed  Google Scholar 

  • Rossi C, Lozano RP, Isanta N, Hellstrom J (2010) Manganese stromatolites in caves: El Soplao (Cantabria, Spain). Geology 38(12):1119–1122

    Article  CAS  Google Scholar 

  • Rossmassler K, Engel AS, Twing KI, Hanson TE, Campbell BJ (2012) Drivers of epsilonproteobacterial community composition in sulfidic caves and springs. FEMS Microbiol Ecol 79(2):421–432

    Article  CAS  PubMed  Google Scholar 

  • Sarbu S, Kinkle B, Vlasceanu L, Kane T, Popa R (1994) Microbiological characterization of a sulfide‐rich groundwater ecosystem. Geomicrobiol J 12(3):175–182

    Article  Google Scholar 

  • Sarbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based cave ecosystem. Science 272(5270):1953–1955

    Article  CAS  PubMed  Google Scholar 

  • Secord D, Muller-Parker G (2005) Symbiont distribution along a light gradient within an intertidal cave. Limnol Oceanogr 50(1):272–278

    Article  Google Scholar 

  • Shabarova T, Widmer F, Pernthaler J (2013) Mass effects meet species sorting: transformations of microbial assemblages in epiphreatic subsurface karst water pools. Environ Microbiol 15(9):2476–2488

    Article  CAS  PubMed  Google Scholar 

  • Simon KS, Benfield EF (2002) Ammonium retention and whole-stream metabolism in cave streams. Hydrobiologia 482(1–3):31–39

    Article  CAS  Google Scholar 

  • Simon K, Benfield E, Macko S (2003) Food web structure and the role of epilithic biofilms in cave streams. Ecology 84(9):2395–2406

    Article  Google Scholar 

  • Simon KS, Pipan T, Culver DC (2007) A conceptual model of the flow and distribution of organic carbon in caves. J Cave Karst Stud 69(2):279–284

    CAS  Google Scholar 

  • Smith T, Olson R (2007) A taxonomic survey of lamp flora (Algae and Cyanobacteria) in electrically lit passages within Mammoth Cave National Park, Kentucky. Int J Speleol 36(2):105–114

    Article  Google Scholar 

  • Spear JR, Barton HA, Robertson CE, Francis CA, Pace NR (2007) Microbial community biofabrics in a geothermal mine adit. Appl Environ Microbiol 73(19):6172–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spilde MN, Northup DE, Boston PJ, Schelble RT, Dano KE, Crossey LJ, Dahm CN (2005) Geomicrobiology of cave ferromanganese deposits: a field and laboratory investigation. Geomicrobiol J 22(3-4):99–116

    Article  CAS  Google Scholar 

  • Steinhauer ES, Omelon CR, Bennett PC (2010) Limestone corrosion by neutrophilic sulfur-oxidizing bacteria: a coupled microbe-mineral system. Geomicrobiol J 27(8):723–738

    Article  CAS  Google Scholar 

  • Strader B, Schubert K, Quintana M, Gomez E, Curnutt J, Boston P (2011) Estimation, modeling, and simulation of patterned growth in extreme environments. In: Software tools and algorithms for biological systems. Springer, pp 157–170

    Google Scholar 

  • Teske AP (2005) The deep subsurface biosphere is alive and well. Trends Microbiol 13(9):402–404

    Article  CAS  PubMed  Google Scholar 

  • Tetu SG, Breakwell K, Elbourne LD, Holmes AJ, Gillings MR, Paulsen IT (2013) Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME J 7:1227–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlasceanu L, Sarbu SM, Engel AS, Kinkle BK (2000) Acidic cave-wall biofilms located in the Frasassi Gorge, Italy. Geomicrobiol J 17(2):125–139

    Article  CAS  Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New York

    Google Scholar 

  • White WB, Vito C, Scheetz BE (2009) The mineralogy and trace element chemistry of black manganese oxide deposits from caves. J Cave Karst Stud 71(2):136–143

    CAS  Google Scholar 

  • Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs acetate fermentation—Isotope evidence. Geochim Cosmochim Acta 50(5):693–709

    Article  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95(12):6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigley T, Plummer L (1976) Mixing of carbonate waters. Geochim Cosmochim Acta 40(9):989–995

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to extend gratitude to everyone who has assisted and supported our cave microbiology research, especially to Alessandro Montanari for continued logistical support and the use of facilities at the Osservatorio Geologico di Coldigioco and to S. Carnevali, S. Cerioni, S. Galdenzi, M. Mainiero, S. Mariani, and the Gruppo Speleologico C.A.I. di Fabriano for technical support and scientific discussions in Italy. We also thank L. Hose, L. Rosales-Lagarde, I. Schaperdoth, S. Dattagupta, E. Lyon, T. Jones, K. Dawson, and R. McCauley for assistance in the field and lab. Our work has been supported by generous funding from the National Science Foundation, the NASA Astrobiology Institute, the Cave Conservancy Foundation, and the Marche Regional Government and the Marche Speleologic Federation. Special thanks to C. Hurst for organizing and editing this volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jones, D.S., Macalady, J.L. (2016). The Snotty and the Stringy: Energy for Subsurface Life in Caves. In: Hurst, C. (eds) Their World: A Diversity of Microbial Environments. Advances in Environmental Microbiology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28071-4_5

Download citation

Publish with us

Policies and ethics