Skip to main content

Impulsive Models in Economics

  • Chapter
  • First Online:
Applied Impulsive Mathematical Models

Part of the book series: CMS Books in Mathematics ((CMSBM))

  • 1085 Accesses

Abstract

In the present chapter, impulsive models in economics are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Accinelli, E., Brida, J.G.: Population growth and the Solow–Swan model. Int. J. Ecol. Econ. Stat. 8, 54–63 (2007)

    MathSciNet  Google Scholar 

  2. Ahmad, S., Rao, M.R.M.: Asymptotically periodic solutions of N-competing species problem with time delays. J. Math. Anal. Appl. 186, 559–571 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antoci, A., Galeotti, M., Russu, P.: Undesirable economic growth via agents’ self protection against environmental degradation. J. Frankl. Inst. 344, 377–390 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arrow, K.J.: Price-quantity adjustments in multiple markets with rising demands. In: Proceedings of the Symposium on Mathematical Methods in the Social Science, pp. 3–15. Stanford University Press, Palo Arto (1960)

    Google Scholar 

  5. Belair, J., Mackey, M.C.: Consumer memory and price fluctuations in commodity markets: an integrodifferential model. J. Dyn. Differ. Equ. 1, 299–525 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic, New York (1963)

    MATH  Google Scholar 

  7. Boucekkine, R., Licandro, O., Christopher, P.: Differential-difference equations in economics: on the numerical solutions of vintage capital growth model. J. Econ. Dyn. Control 21, 347–362 (1997)

    Article  MATH  Google Scholar 

  8. Burton, T.A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Academic, New York (1985)

    MATH  Google Scholar 

  9. Candenillas, A., Choulli, T., Taksar, M., Zhang, L.: Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm. Math. Financ. 16, 181–202 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cobb, C.W., Douglas, P.H.: A theory of production. Am. Econ. Rev. 18, 139–165 (1928)

    Google Scholar 

  11. Deardorff, A.: Growth paths in the Solow neoclassical growth model. Q. J. Econ. 84, 134–139 (1970)

    Article  Google Scholar 

  12. Dejong, D., Ingram, B., Whiteman, C.: Keynesian impulses versus Solow residuals: identifying sources of business cycle fluctuation. J. Appl. Econ. 15, 311–329 (2000)

    Article  Google Scholar 

  13. Dohtani, A.: Growth-cycle model of Solow–Swan type. I. J. Econ. Behav. Organ. 76, 428–444 (2010)

    Article  Google Scholar 

  14. Draviam, T., Coleman, T.F., Li, Y.: Dynamic liquidation under market impact. Quant. Financ. 11, 69–80 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Emmenegger, G.-F., Stamova, I.M.: Shocks to capital intensity make the Solow equation an impulsive differential equation. Int. J. Differ. Equ. Appl. 6, 93–110 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Fanti, L., Manfredi, P.: The Solow’s model with endogenous population: a neoclassical growth cycle model. J. Econ. Dev. 28, 103–115 (2003)

    Google Scholar 

  17. Farahani, A.M., Grove, E.A.: A simple model for price fluctuation in a single commodity. Contemp. Math. 129, 97–103 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferrara, M.: A note on the Solow economic growth model with Richards population growth law. Appl. Sci. 13, 36–39 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Fowler, A.C., Mackey, M.C.: Relaxation oscillations in a class of delay differential equations. SIAM J. Appl. Math. 63, 299–323 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guerrini, L.: The Solow–Swan model with a bounded population growth rate. J. Math. Econ. 42, 14–21 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guerrini, L.: Global asymptotic stability of an economic growth model: an alternative proof. Int. J. Contemp. Math. Sci. 6, 1293–1296 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1977)

    Book  MATH  Google Scholar 

  23. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  24. He, X.Z., Zheng, M.: Dynamics of moving average rules in a continuous-time financial market model. J. Econ. Behav. Organ. 76, 615–634 (2010)

    Article  Google Scholar 

  25. Izyumov, A., Vahaly, J.: New capital accumulation in transition economies: implications for capital-labor and capital-output ratios. Econ. Change Restruct. 39, 63–83 (2006)

    Article  Google Scholar 

  26. Kolmanovskii, V.B., Myshkis, A.D.: Applied Theory of Functional Differential Equations. Kluwer Academic, Dordrecht (1992)

    Book  MATH  Google Scholar 

  27. Kolmanovskii, V.B., Nosov, V.R.: Stability of Functional-Differential Equations. Academic, London (1986)

    Google Scholar 

  28. Küchler, U., Platen, E.: Time delay and noise explaining cyclical fluctuations in prices of commodities. Technical report, 195. Quantitative Finance Research Centre, University of Technology, Sydney (2007)

    Google Scholar 

  29. Lakshmikantham, V., Rao, M.R.M.: Theory of Integro-Differential Equations. Gordon and Breach, Lausanne (1995)

    MATH  Google Scholar 

  30. Lasota, A., Mackey, M.C.: Probabilistic Properties of Deterministic Systems. Cambridge University Press, London/New York (1985)

    Book  MATH  Google Scholar 

  31. Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Springer, New York/ Berlin (1983)

    Google Scholar 

  32. Mackey, M.: Commodity price fluctuations: price dependent delays and nonlinearities as explanatory factors. J. Econ. Theory 48, 495–509 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Matsumoto, A., Szidarovszky, F.: Asymptotic behavior of a delay differential neoclassical growth model. Sustainability 5, 440–455 (2013)

    Article  Google Scholar 

  34. McCulloch, J.R.: A Treatise on the Circumstances Which Determine the Rate of Wage and the Condition of the Labouring Classes. Longman, London (1854)

    Google Scholar 

  35. Moreno, D.: Prices, delay and the dynamics of trade. J. Econ. Theory 104, 304–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Muresan, A.S.: On some models of price fluctuations in a market economy. Studia Univ. Babes-Bolyai Math. 38, 15–19 (1993)

    MathSciNet  MATH  Google Scholar 

  37. Muresan, A.S.: On a functional-differential equation from price theory. In: Proceedings of the IEEE 2009 International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timişoara, pp. 150–156 (2009)

    Google Scholar 

  38. Nerlove, M., Raut K.L.: Growth models with endogenous population: a general framework. In: Rosenzweig, M., Stark, O. (eds.) Handbook of Family and Population Economics, pp. 1117–1174. North-Holland, Amsterdam (1997)

    Chapter  Google Scholar 

  39. Rus, A.T., Iancu, C.: A functional-differential model for price fluctuations in a single commodity market. Studia Univ. Babes-Bolyai Math. 2, 9–14 (1993)

    MathSciNet  MATH  Google Scholar 

  40. Saaty, T.L., Joyce, M.: Thinking with Models: Mathematical Models in the Physical, Biological, and Social Sciences. Pergamon Press, Oxford (1981)

    MATH  Google Scholar 

  41. Seifert, G.: Nonlinear evolution equation with almost periodic time-dependence. SIAM J. Math. Anal. 18, 387–392 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Solow, R.: A contribution to the theory of economic growth. Q. J. Econ. 70, 65–94 (1956)

    Article  Google Scholar 

  43. Stamov, G.T.: Almost Periodic Solutions of Impulsive Differential Equations. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  44. Stamov, G.Tr., Alzabut, J.O., Atanasov, P., Stamov, A.G.: Almost periodic solutions for an impulsive delay model of price fluctuations in commodity markets. Nonlinear Anal. Real World Appl. 12, 3170–3176 (2011)

    Google Scholar 

  45. Stamov, G.Tr., Stamov, A.: On almost periodic processes in uncertain impulsive delay models of price fluctuations in commodity markets. Appl. Math. Comput. 219, 5376–5383 (2013)

    Google Scholar 

  46. Stamova, I.: Stability Analysis of Impulsive Functional Differential Equations. Walter de Gruyter, Berlin (2009)

    Book  MATH  Google Scholar 

  47. Stamova, I.M., Emmenegger, J.F., Stamov, A.G.: Stability analysis of an impulsive Solow–Swan model with endogenous population. Int. J. Pure Appl. Math. 65, 243–255 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Stamova, I.M., Stamov, A.G.: Impulsive control on the asymptotic stability of the solutions of a Solow model with endogenous labor growth. J. Frankl. Inst. 349, 2704–2716 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Stamova, I.M., Stamov, A.G.: On the stability of the solutions of an impulsive Solow model with endogenous population. Econ. Change Restruct. 46, 203–217 (2013)

    Article  Google Scholar 

  50. Ulussever, T.: A welfare policy analysis in the Turkish economy: a simulation based macroeconomic application of the deficit financing policies. J. Frankl. Inst. 348, 1416–1434 (2011)

    Article  MathSciNet  Google Scholar 

  51. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Article  MATH  Google Scholar 

  52. Yang, Y.: Establish of macroeconomics model with impulsive perturbation and analysis of its stability. In: Proceedings of the IEEE 2010 International Conference on Computer Application and System Modeling, Taiyuan, pp. V9-540–V9-543 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stamova, I., Stamov, G. (2016). Impulsive Models in Economics. In: Applied Impulsive Mathematical Models. CMS Books in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-28061-5_6

Download citation

Publish with us

Policies and ethics