Skip to main content

Hyper-lattice

  • Chapter
  • First Online:
  • 483 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

In this chapter we introduce and discuss the notion of hyperlattice, a generalization of the notion of lattice of cuboids which is at the basis of most data warehousing techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sen S, Chaki N, Cortesi A (2009) Optimal Space and time complexity analysis on the lattice of cuboids using galois connections for data warehousing. In Proceedings of the IEEE 4th international conference on computer sciences and convergence information technology (ICCIT 2009), pp 1271–1275

    Google Scholar 

  2. Agarwal S, Agrawal R, Deshpande PM, Gupta A, Naughton JF, Ramakrishnan R, Sarawagi S (1996) On the computation of multidimensional aggregates. In: Proceedings of the 22th international conference on very large data bases (VLDB), pp 506–521

    Google Scholar 

  3. Halder R, Cortesi A (2012) Abstract interpretation of database query languages. J Comput Lang Syst Struct 38(2):123–157

    MATH  Google Scholar 

  4. Chen Y, Dong G, Han J, Wah BW, Wang J (2002) Multi-dimensional regression analysis of time-series data streams. In: Proceedings of the 28th international conference on very large data bases (VLDB), pp 323–334

    Google Scholar 

  5. Gray J, Chaudhuri S, Bosworth A, Layman A, Reichart D, Venkatrao M, Pellow F, Pirahesh H (1997) Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min Knowl Discov 1(1):29–53

    Article  Google Scholar 

  6. Han J, Kamber M (2006) Data mining: concepts and techniques, 2nd edn. The Morgan Kaufmann series in data management systems, Elsevier Science. ISBN 13: 978-1-55860-901-3

    Google Scholar 

  7. Li X, Han J, Gonzalez H (2004) High-dimensional OLAP: a minimal cubing approach. In: Proceedings of the 30th international conference on very large data bases (VLDB), pp 528–539

    Google Scholar 

  8. Papadias D, Kalnis P, Zhang J, Tao Y (2001) Efficient OLAP operations in spatial data warehouses. In: Proceedings of the 7th international conference on advances in spatial and temporal databases (SSTD). Springer, LNCS 2121, pp 443–459

    Google Scholar 

  9. Wang M, Iyer B (1997) Efficient roll-up and drill-down analysis in relational databases. In: Proceedings of the 1st SIGMOD workshop on research issues on data mining and knowledge discovery, pp 39–43

    Google Scholar 

  10. Wijsen J, Ng RT, Price D (1999) Discovering roll-up dependencies. In: Proceedings of the 5th ACM SIGKDD international conference knowledge discovery and data mining, pp 213–22

    Google Scholar 

  11. Harinarayan V, Rajaraman A, Ullman JD (1996) Implementing data cubes efficiently. In: Proceedings of the 22nd ACM SIGMOD international conference on management of data, pp 205–216

    Google Scholar 

  12. Baralis E, Paraboschi S, Tenient E (1997) Materialized view selection in a multidimensional database. In: Proceedings of the 23rd international conference on very large database (VLDB), pp 156—165

    Google Scholar 

  13. Ullman JD (1996) Efficient implementation of data cubes via materialized views. In: Proceedings of the 2nd international conference on knowledge discovery and data mining (KDD), pp 386–388

    Google Scholar 

  14. Yu JX, Lu H, (2001) Multi-cube computation. In: Proceedings of the 7th international conference on database systems for advanced applications, pp 126–133

    Google Scholar 

  15. Dehne F, Eavis T, Hambrusch S, Rau-Chaplin A (2001) Parallelizing the data cube. In: Proceedings of the 8th international conference on database theory (ICDT), pp 129–143

    Google Scholar 

  16. Dehne F, Eavis T, Hambrusch S, Rau-Chaplin A (2006) The cgmCUBE project: optimizing parallel data cube generation for ROLAP. J Distrib Parallel Databases 23(2):99–126

    Google Scholar 

  17. Han J, Pei J, Dong G, Wang K (2001) Efficient computation of iceberg cubes with complex measures. In: Proceedings of the 27th ACM SIGMOD international conference on management of data, pp 1–12

    Google Scholar 

  18. Zhao Y, Deshpande P, Naughton JF (1997) An array-based algorithm for simultaneous multidimensional aggregates. In: Proceedings of the 23rd ACM SIGMOD International conference on Management of data, pp 159–170

    Google Scholar 

  19. Chen Y, Dehne F, Eavis T, Rau-Chaplin (2004) A building large ROLAP data cubes in parallel. In: Proceedings of the 8th international database engineering and applications symposium (IDEAS), pp 367–377

    Google Scholar 

  20. Beyer K, Ramakrishnan R (1999) Bottom-up computation of sparse and iceberg cubes. In: Proceedings of the 25th ACM SIGMOD International conference on management of data, pp 359–370

    Google Scholar 

  21. Hu XG, Wang DX, Liu XP, Guo J, Wang H (2004) The analysis on model of association rules mining based on concept lattice and a-priori algorithm. In: Proceedings of the 3rd international conference on machine learning and cybernetics (ICMLC), pp 1620–1624

    Google Scholar 

  22. Xin D, Han J, Li X, Wah BW (2003) Star-cubing: computing iceberg cubes by top-down and bottom-up integration. In: Proceedings of the 23rd international conference on very large database (VLDB), pp 476–487

    Google Scholar 

  23. Shao Z, Han J, Xin D (2004) MM-cubing: computing Iceberg cubes by factorizing the lattice space. In: Proceedings of the 16th international conference on scientific and statistical database management (SSDBM), pp 213–222

    Google Scholar 

  24. Xin D, Han J, Li X, Shao Z, Wah BW (2007) Computing iceberg cubes by top-down and bottom-up integration: the starcubing approach. IEEE Trans Knowl Data Eng 19(1):111–126

    Article  Google Scholar 

  25. Barbara D, Wu X (2000) Using loglinear models to compress datacube. In: Proceedings of the 1st international conference on web-age information management (WAIM), pp 311–322

    Google Scholar 

  26. Vitter JS, Wang M, Iyer BR (1998) Data cube approximation and histograms via wavelets. In: Proceedings of the 7th international conference on information and knowledge management (CIKM), pp 96–104

    Google Scholar 

  27. Jinghua H, Mei Y, Xiaowei L, Xinna S (2010) The design and implementation of MDSS based on data warehouse. In: Proceedings of the 1st international conference on computing, control and industrial engineering (CCIE), pp 42–45

    Google Scholar 

  28. Huang C, Zeng Z, Yue D (2006) The design and its achieving method on multi-dimension data warehouse of medical waste management. In: Proceedings of the 1st IEEE international conference on service operations and logistics, and informatics, pp 873–877

    Google Scholar 

  29. Tripathy A, Mishra L, Patra PK (2010) A multi dimensional design framework for querying spatial data using concept lattice. In: Proceedings of the 2nd international advance computing conference (IACC), pp 394–399

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Sen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Sen, S., Cortesi, A., Chaki, N. (2016). Hyper-lattice. In: Hyper-lattice Algebraic Model for Data Warehousing. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28044-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28044-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28042-4

  • Online ISBN: 978-3-319-28044-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics