Skip to main content

Syndromes Associated with Growth Hormone Deficiency

  • Chapter
  • First Online:
Growth Hormone Deficiency
  • 1161 Accesses

Abstract

Growth hormone deficiency may occur in isolation or with deficiencies of other pituitary hormones. Hypothalamic and pituitary development occurs during a time in embryonic development when other crucial organs are also evolving and growing. For this reason, growth hormone deficiency may be a component of a syndrome that involves multiple organs. This chapter will discuss the most common and best characterized clinical syndromes that have growth hormone deficiency as a major feature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patel L, McNally RJQ, Harrison E, Lloyd IC, Clayton PE. Geographical distribution of optic nerve hypoplasia and septo-optic dysplasia in Northwest England. J Pediatr. 2006;148(1):85–8.

    Article  PubMed  Google Scholar 

  2. Atapattu N, Ainsworth J, Willshaw H, Parulekar M, MacPherson L, Miller C, et al. Septo-optic dysplasia: antenatal risk factors and clinical features in a regional study. Horm Res Paediatr. 2012;78(2):81–7.

    Article  CAS  PubMed  Google Scholar 

  3. Webb EA, Dattani MT. Septo-optic dysplasia. Eur J Hum Genet. 2010;18(4):393–7.

    Article  PubMed  Google Scholar 

  4. Barkovich AJ, Fram EK, Norman D. Septo-optic dysplasia: MR imaging. Radiology. 1989;171(1):189–92.

    Article  CAS  PubMed  Google Scholar 

  5. Morishima A, Aranoff GS. Syndrome of septo-optic-pituitary dysplasia: the clinical spectrum. Brain Dev. 1986;8(3):233–9.

    Article  CAS  PubMed  Google Scholar 

  6. Haddad NG, Eugster EA. Hypopituitarism and neurodevelopmental abnormalities in relation to central nervous system structural defects in children with optic nerve hypoplasia. J Pediatr Endocrinol Metab. 2005;18(9):853–8.

    Article  PubMed  Google Scholar 

  7. Garcia ML, Ty EB, Taban M, David Rothner A, Rogers D, Traboulsi EI. Systemic and ocular findings in 100 patients with optic nerve hypoplasia. J Child Neurol. 2006;21(11):949–56.

    Article  PubMed  Google Scholar 

  8. McCabe MJ, Alatzoglou KS, Dattani MT. Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond. Best Pract Res Clin Endocrinol Metab. 2011;25(1):115–24.

    Article  CAS  PubMed  Google Scholar 

  9. Cohen RN, Cohen LE, Botero D, Yu C, Sagar A, Jurkiewicz M, et al. Enhanced repression by HESX1 as a cause of hypopituitarism and septooptic dysplasia. J Clin Endocrinol Metab. 2003;88(10):4832–9.

    Article  CAS  PubMed  Google Scholar 

  10. Stevens CA, Dobyns WB. Septo-optic dysplasia and amniotic bands: further evidence for a vascular pathogenesis. Am J Med Genet A. 2004;125A(1):12–6.

    Article  PubMed  Google Scholar 

  11. Macchiaroli A, Kelberman D, Auriemma RS, Drury S, Islam L, Giangiobbe S, et al. A novel heterozygous SOX2 mutation causing congenital bilateral anophthalmia, hypogonadotropic hypogonadism and growth hormone deficiency. Gene. 2014;534(2):282–5.

    Article  CAS  PubMed  Google Scholar 

  12. Solomon BD, Mercier S, Velez JI, Pineda-Alvarez DE, Wyllie A, Zhou N, et al. Analysis of genotype-phenotype correlations in human holoprosencephaly. Am J Med Genet C Semin Med Genet. 2010;154C(1):133–41.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mercier S, Dubourg C, Garcelon N, Campillo-Gimenez B, Gicquel I, Belleguic M, et al. New findings for phenotype-genotype correlations in a large European series of holoprosencephaly cases. J Med Genet. 2011;48(11):752–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Solomon BD, Bear KA, Wyllie A, Keaton AA, Dubourg C, David V, et al. Genotypic and phenotypic analysis of 396 individuals with mutations in Sonic Hedgehog. J Med Genet. 2012;49(7):473–9.

    Article  CAS  PubMed  Google Scholar 

  15. Roessler E, Du Y, Mullor JL, Casas E, Allen WP, Gillessen-Kaesbach G, et al. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc Natl Acad Sci. 2003;100(23):13424–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Franca MM, Jorge AA, Carvalho LR, Costalonga EF, Vasques GA, Leite CC, et al. Novel heterozygous nonsense GLI2 mutations in patients with hypopituitarism and ectopic posterior pituitary lobe without holoprosencephaly. J Clin Endocrinol Metab. 2010;95(11):E384–91.

    Article  PubMed  Google Scholar 

  17. Bear KA, Solomon BD, Antonini S, Arnhold IJ, Franca MM, Gerkes EH, et al. Pathogenic mutations in GLI2 cause a specific phenotype that is distinct from holoprosencephaly. J Med Genet. 2014;51(6):413–8.

    Article  CAS  PubMed  Google Scholar 

  18. Park HL, Bai C, Platt KA, Matise MP, Beeghly A, Hui CC, et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development. 2000;127(8):1593–605.

    CAS  PubMed  Google Scholar 

  19. Wang Y, Martin JF, Bai CB. Direct and indirect requirements of Shh/Gli signaling in early pituitary development. Dev Biol. 2010;348(2):199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnston JJ, Olivos-Glander I, Killoran C, Elson E, Turner JT, Peters KF, et al. Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet. 2005;76(4):609–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Demurger F, Ichkou A, Mougou-Zerelli S, Le Merrer M, Goudefroye G, Delezoide AL, et al. New insights into genotype-phenotype correlation for GLI3 mutations. Eur J Hum Genet. 2015;23(1):92–102.

    Article  CAS  PubMed  Google Scholar 

  22. Aoto K, Nishimura T, Eto K, Motoyama J. Mouse GLI3 regulates Fgf8 expression and apoptosis in the developing neural tube, face, and limb bud. Dev Biol. 2002;251(2):320–32.

    Article  CAS  PubMed  Google Scholar 

  23. Hsu P, Ma A, Wilson M, Williams G, Curotta J, Munns CF, et al. CHARGE syndrome: a review. J Paediatr Child Health. 2014;50(7):504–11.

    Article  PubMed  Google Scholar 

  24. Pinto G, Abadie V, Mesnage R, Blustajn J, Cabrol S, Amiel J, et al. CHARGE syndrome includes hypogonadotropic hypogonadism and abnormal olfactory bulb development. J Clin Endocrinol Metab. 2005;90(10):5621–6.

    Article  CAS  PubMed  Google Scholar 

  25. Asakura Y, Toyota Y, Muroya K, Kurosawa K, Fujita K, Aida N, et al. Endocrine and radiological studies in patients with molecularly confirmed CHARGE syndrome. J Clin Endocrinol Metab. 2008;93(3):920–4.

    Article  CAS  PubMed  Google Scholar 

  26. Shoji Y, Ida S, Etani Y, Yamada H, Kayatani F, Suzuki Y, et al. Endocrinological characteristics of 25 Japanese patients with CHARGE syndrome. Clin Pediatr Endocrinol. 2014;23(2):45–51.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bergman JE, Janssen N, Hoefsloot LH, Jongmans MC, Hofstra RM, van Ravenswaaij-Arts CM. CHD7 mutations and CHARGE syndrome: the clinical implications of an expanding phenotype. J Med Genet. 2011;48(5):334–42.

    Article  CAS  PubMed  Google Scholar 

  28. Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature. 2010;463(7283):958–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hurd EA, Capers PL, Blauwkamp MN, Adams ME, Raphael Y, Poucher HK, et al. Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mamm Genome. 2007;18(2):94–104.

    Article  CAS  PubMed  Google Scholar 

  30. Gregory LC, Gevers EF, Baker J, Kasia T, Chong K, Josifova DJ, et al. Structural pituitary abnormalities associated with CHARGE syndrome. J Clin Endocrinol Metab. 2013;98(4):E737–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Titheradge H, Togneri F, McMullan D, Brueton L, Lim D, Williams D. Axenfeld-Rieger syndrome: further clinical and array delineation of four unrelated patients with a 4q25 microdeletion. Am J Med Genet A. 2014;164(7):1695–701.

    Article  CAS  Google Scholar 

  32. Tumer Z, Bach-Holm D. Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur J Hum Genet. 2009;17(12):1527–39.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ai D, Wang J, Amen M, Lu M, Amendt BA, Martin JF. Nuclear factor 1 and T-cell factor/LEF recognition elements regulate Pitx2 transcription in pituitary development. Mol Cell Biol. 2007;27(16):5765–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, et al. Identification of a Wnt/Dvl/β-Catenin → Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002;111(5):673–85.

    Article  CAS  PubMed  Google Scholar 

  35. Gage PJ, Suh H, Camper SA. Dosage requirement of Pitx2 for development of multiple organs. Development. 1999;126(20):4643–51.

    CAS  PubMed  Google Scholar 

  36. Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, et al. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics. 1993;91(2):398–402.

    CAS  PubMed  Google Scholar 

  37. Gunay-Aygun M, Schwartz S, Heeger S, O’Riordan MA, Cassidy SB. The changing purpose of Prader-Willi syndrome clinical diagnostic criteria and proposed revised criteria. Pediatrics. 2001;108(5):e92.

    Article  CAS  PubMed  Google Scholar 

  38. Goldstone AP, Holland AJ, Hauffa BP, Hokken-Koelega A, Tauber M. Recommendations for the diagnosis and management of Prader-Willi syndrome. J Clin Endocrinol Metab. 2008;93(11):4183–97.

    Article  CAS  PubMed  Google Scholar 

  39. The Committee on Genetics. Health supervision for children with Prader-Willi syndrome. Pediatrics. 2011;127(1):195–204.

    Article  Google Scholar 

  40. Deal CL, Tony M, Höybye C, Allen DB, Tauber M, Christiansen JS, et al. Growth Hormone Research Society workshop summary: consensus guidelines for recombinant human growth hormone therapy in Prader-Willi syndrome. J Clin Endocrinol Metab. 2013;98(6):E1072–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet Med. 2012;14(1):10–26.

    Article  CAS  PubMed  Google Scholar 

  42. Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN, Gill JC, et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med. 2013;368(26):2467–75.

    Article  CAS  PubMed  Google Scholar 

  43. Schaaf CP, Gonzalez-Garay ML, Xia F, Potocki L, Gripp KW, Zhang B, et al. Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat Genet. 2013;45(11):1405–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bischof JM, Stewart CL, Wevrick R. Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome. Hum Mol Genet. 2007;16(22):2713–9.

    Article  CAS  PubMed  Google Scholar 

  45. Kanber D, Giltay J, Wieczorek D, Zogel C, Hochstenbach R, Caliebe A, et al. A paternal deletion of MKRN3, MAGEL2 and NDN does not result in Prader-Willi syndrome. Eur J Hum Genet. 2009;17(5):582–90.

    Article  CAS  PubMed  Google Scholar 

  46. Bieth E, Eddiry S, Gaston V, Lorenzini F, Buffet A, Conte Auriol F, et al. Highly restricted deletion of the SNORD116 region is implicated in Prader-Willi syndrome. Eur J Hum Genet. 2015;23(2):252–5.

    Article  CAS  PubMed  Google Scholar 

  47. Ding F, Li HH, Zhang S, Solomon NM, Camper SA, Cohen P, et al. SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS One. 2008;3(3):e1709.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Weinzimer SA, McDonald-McGinn DM, Driscoll DA, Emanuel BS, Zackai EH, Moshang T. Growth hormone deficiency in patients with a 22q11.2 deletion: expanding the phenotype. Pediatrics. 1998;101(5):929–32.

    Article  CAS  PubMed  Google Scholar 

  49. Castells S, Chakurkar A, Qazi Q, Bastian W. Robinow syndrome with growth hormone deficiency: treatment with growth hormone. J Pediatr Endocrinol Metab. 1999;12(4):565–71.

    Article  CAS  PubMed  Google Scholar 

  50. Schulz AL, Albrecht B, Arici C, van der Burgt I, Buske A, Gillessen-Kaesbach G, et al. Mutation and phenotypic spectrum in patients with cardio-facio-cutaneous and Costello syndrome. Clin Genet. 2008;73(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  51. Stein RI, Legault L, Daneman D, Weksberg R, Hamilton J. Growth hormone deficiency in Costello syndrome. Am J Med Genet A. 2004;129A(2):166–70.

    Article  PubMed  Google Scholar 

  52. Valente EM, Brancati F, Boltshauser E, Dallapiccola B. Clinical utility gene card for: Joubert syndrome--update 2013. Eur J Hum Genet 2013;21(10). doi:10.1038/ejhg.2013.10. Epub 2013 Feb 13.

    Google Scholar 

  53. Schrander-Stumpel CT, Spruyt L, Curfs LM, Defloor T, Schrander JJ. Kabuki syndrome: clinical data in 20 patients, literature review, and further guidelines for preventive management. Am J Med Genet A. 2005;132A(3):234–43.

    Article  PubMed  Google Scholar 

  54. Lee KW, Lee PD. Growth hormone deficiency (GHD): a new association in Peters’ Plus Syndrome (PPS). Am J Med Genet A. 2004;124A(4):388–91.

    Article  PubMed  Google Scholar 

  55. Pedreira CC, Savarirayan R, Zacharin MR. IMAGe syndrome: a complex disorder affecting growth, adrenal and gonadal function, and skeletal development. J Pediatr. 2004;144(2):274–7.

    Article  CAS  PubMed  Google Scholar 

  56. Berio A, Piazzi A. Multiple endocrinopathies (growth hormone deficiency, autoimmune hypothyroidism and diabetes mellitus) in Kearns-Sayre syndrome. Pediatr Med Chir. 2013;35(3):137–40.

    Article  CAS  PubMed  Google Scholar 

  57. Matsuzaki M, Izumi T, Shishikura K, Suzuki H, Hirayama Y. Hypothalamic growth hormone deficiency and supplementary GH therapy in two patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes. Neuropediatrics. 2002;33(5):271–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara A. DiVall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

DiVall, S.A. (2016). Syndromes Associated with Growth Hormone Deficiency. In: Cohen, L. (eds) Growth Hormone Deficiency. Springer, Cham. https://doi.org/10.1007/978-3-319-28038-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28038-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28036-3

  • Online ISBN: 978-3-319-28038-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics