Skip to main content

Exploiting Multistability to Stabilize Chimera States in All-to-All Coupled Laser Networks

  • Chapter
  • First Online:
Book cover Control of Self-Organizing Nonlinear Systems

Part of the book series: Understanding Complex Systems ((UCS))

  • 2078 Accesses

Abstract

Large networks of optically coupled semiconductor lasers can be realized as on-chip solutions. They serve as general testbeds for delay-coupled networks but may also be candidates for new methods in signal processing. Our work focuses on all-to-all networks where the individual units are coupled to each other by a common mirror with very short delay times. Using the well-known Lang-Kobayashi-model for the local laser dynamics, we investigate the occurring bifurcation structure of the complex network in terms of numerical integration and path continuation techniques. We especially focus on the interrelation between material parameters of the laser and occurring synchronization patterns. In this respect we identify the time scale separation between photon and electron lifetimes T as well as the amplitude-phase coupling \(\alpha \) to be the driving forces for multi-stability between different cluster solutions. As an example quantum-dot lasers with strongly damped relaxation oscillations are found to present less rich dynamics when coupled to a network. Depending on the initial conditions, one-color symmetric states (all lasers emit the same constant waves), inhomogeneous one-color symmetry-broken states (clusters form that emit at different constant wave intensities), and multi-color symmetry-broken states (clusters with different period pulsations) are found. Those solutions can be analytically understood by reducing the equations to two coupled lasers, where the dynamic bifurcation scenarios have been discussed (Clerkin et al. Phys Rev E 89:032919, 2014 [2]). Additionally we find chimera states, i.e. partially synchronized cluster solutions, where the desynchronized clusters are chaotic in phase, amplitude and carrier inversion (Böhm et al. Phys Rev E 91(4):040901(R), 2015 [1]). They form from random initial conditions within the regions of multistability for the case of large enough amplitude-phase coupling. These chimera states defy several of the previously established existence criteria. While chimera states in phase oscillators generally demand non-local coupling, large system sizes, and specially prepared initial conditions, we find chimera states that are stable for global coupling in a network of only four coupled lasers for random initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Böhm, A. Zakharova, E. Schöll, K. Lüdge, Phys. Rev. E 91(4), 040901 (R) (2015)

    Google Scholar 

  2. E. Clerkin, S. O’Brien, A. Amann, Phys. Rev. E 89, 032919 (2014)

    Article  ADS  Google Scholar 

  3. M.C. Soriano, J. García-Ojalvo, C.R. Mirasso, I. Fischer, Rev. Mod. Phys. 85, 421 (2013)

    Article  ADS  Google Scholar 

  4. K. Lüdge, Nonlinear Laser Dynamics—From Quantum Dots to Cryptography (Wiley-VCH, Weinheim, 2012)

    MATH  Google Scholar 

  5. C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux, Int. J. Bifurcation Chaos 22(10), 1250246 (2012). doi:10.1142/s021812741250246x

    Article  Google Scholar 

  6. J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer, Berlin, 2005)

    MATH  Google Scholar 

  7. J. Mørk, B. Tromborg, J. Mark, IEEE J. Quantum Electron. 28, 93 (1992)

    Article  ADS  Google Scholar 

  8. A. Uchida, Optical Communication with Chaotic Lasers. Applications of Nonlinear Dynamics and Synchronization (Wiley, 2012)

    Google Scholar 

  9. L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C.R. Mirasso, I. Fischer, Nat. Commun. 2, 468 (2011). doi:10.1038/ncomms1476

    Article  ADS  Google Scholar 

  10. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C.R. Mirasso, L. Pesquera, K.A. Shore, Nature 438, 343 (2005). doi:10.1038/nature04275

    Article  ADS  Google Scholar 

  11. A. Argyris, M. Hamacher, K.E. Chlouverakis, A. Bogris, D. Syvridis, Phys. Rev. Lett. 100(19), 194101 (2008). doi:10.1103/physrevlett.100.194101

    Article  ADS  Google Scholar 

  12. T. Heil, J. Mulet, I. Fischer, C.R. Mirasso, M. Peil, P. Colet, W. Elsäßer, IEEE J. Quantum Electron. 38(9), 1162 (2002). doi:10.1109/jqe.2002.801950

    Article  ADS  Google Scholar 

  13. L. Larger, M.C. Soriano, D. Brunner, L. Appeltant, J.M. Gutierrez, L. Pesquera, C.R. Mirasso, I. Fischer, Opt. Express 20(3), 3241 (2012). doi:10.1364/oe.20.003241

    Article  ADS  Google Scholar 

  14. K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. Bienstman, Nat. Photonics 5(3541) (2014)

    Google Scholar 

  15. E.C. Mos, J.J.L. Hoppenbrouwers, M.T. Hill, M.W. Blum, J.J.H.B. Schleipen, H. de Waardt, I.E.E.E. Trans, Neural Netw. 11(4), 988 (2000)

    Article  Google Scholar 

  16. A. Hurtado, I.D. Henning, M.J. Adams, Opt. Express 18(24), 25170 (2010)

    Article  ADS  Google Scholar 

  17. T. Heil, I. Fischer, W. Elsäßer, J. Mulet, C.R. Mirasso, Phys. Rev. Lett. 86, 795 (2001)

    Article  ADS  Google Scholar 

  18. H. Erzgräber, D. Lenstra, B. Krauskopf, E. Wille, M. Peil, I. Fischer, W. Elsäßer, Opt. Commun. 255(4–6), 286 (2005)

    Article  ADS  Google Scholar 

  19. H. Erzgräber, B. Krauskopf, D. Lenstra, SIAM, J. Appl. Dyn. Syst. 5(1), 30 (2006). doi:10.1137/040619958

    Google Scholar 

  20. N. Gross, W. Kinzel, I. Kanter, M. Rosenbluh, L. Khaykovich, Opt. Commun. 267(2), 464 (2006)

    Article  ADS  Google Scholar 

  21. V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, E. Schöll, Phys. Rev. E 79, 065201 (R) (2009). doi:10.1103/physreve.79.065201

  22. V. Flunkert, E. Schöll, New. J. Phys. 14, 033039 (2012). doi:10.1088/1367-2630/14/3/033039

    Article  ADS  Google Scholar 

  23. S. Yanchuk, K.R. Schneider, L. Recke, Phys. Rev. E 69(5), 056221 (2004). doi:10.1103/physreve.69.056221

    Article  ADS  Google Scholar 

  24. G. Kozyreff, A.G. Vladimirov, P. Mandel, Phys. Rev. Lett. 85(18), 3809 (2000)

    Article  ADS  Google Scholar 

  25. G. Kozyreff, A.G. Vladimirov, P. Mandel, Phys. Rev. E 64, 016613 (2001)

    Article  ADS  Google Scholar 

  26. A.G. Vladimirov, G. Kozyreff, P. Mandel, EPL (Europhysics Letters) 61(5), 613 (2003)

    Article  ADS  Google Scholar 

  27. A. Amann, in Nonlinear Laser Dynamics—From Quantum Dots to Cryptography, ed. by K. Lüdge (WILEY-VCH Weinheim, 2011)

    Google Scholar 

  28. S. Yanchuk, Y. Maistrenko, E. Mosekilde, Math. Comp. Simul 54, 491 (2001)

    Article  MathSciNet  Google Scholar 

  29. W. Poel, A. Zakharova, E. Schöll, Phys. Rev. E 91, 022915 (2015). doi:10.1103/physreve.91.022915

    Article  ADS  MathSciNet  Google Scholar 

  30. H.J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, I. Fischer, Phys. Rev. Lett. 94, 163901 (2005)

    Article  ADS  Google Scholar 

  31. K. Hicke, O. D’Huys, V. Flunkert, E. Schöll, J. Danckaert, I. Fischer, Phys. Rev. E 83, 056211 (2011). doi:10.1103/physreve.83.056211

    Article  ADS  Google Scholar 

  32. M.C. Soriano, G. Van der Sande, I. Fischer, C.R. Mirasso, Phys. Rev. Lett. 108, 134101 (2012). doi:10.1103/physrevlett.108.134101

    Article  ADS  Google Scholar 

  33. Y. Kuramoto, D. Battogtokh, Nonlinear Phen. Complex Syst. 5(4), 380 (2002)

    Google Scholar 

  34. D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93(17), 174102 (2004). doi:10.1103/physrevlett.93.174102

    Article  ADS  Google Scholar 

  35. N.C. Rattenborg, C.J. Amlaner, S.L. Lima, Neurosci. Biobehav. Rev. 24, 817 (2000)

    Article  Google Scholar 

  36. C.R. Laing, C.C. Chow, Neural Comput. 13(7), 1473 (2001)

    Article  Google Scholar 

  37. H. Sakaguchi, Phys. Rev. E 73(3), 031907 (2006). doi:10.1103/physreve.73.031907

    Article  ADS  MathSciNet  Google Scholar 

  38. A.E. Motter, S.A. Myers, M. Anghel, T. Nishikawa, Nature Physics 9, 191 (2013). doi:10.1038/nphys2535

    Google Scholar 

  39. J.C. Gonzalez-Avella, M.G. Cosenza, M.S. Miguel, Physica A 399, 24 (2014). doi:10.1016/j.physa.2013.12.035

    Article  ADS  Google Scholar 

  40. O.E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y. Maistrenko, O. Sudakov, Phys. Rev. E 85, 036210 (2012). doi:10.1103/physreve.85.036210

    Article  ADS  Google Scholar 

  41. M.J. Panaggio, D.M. Abrams, Phys. Rev. Lett. 110, 094102 (2013)

    Article  ADS  Google Scholar 

  42. M.J. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015). doi:10.1088/0951-7715/28/3/r67

    Article  ADS  MathSciNet  Google Scholar 

  43. S.I. Shima, Y. Kuramoto, Phys. Rev. E 69(3), 036213 (2004). doi:10.1103/physreve.69.036213

  44. C. Gu, G. St-Yves, J. Davidsen, Phys. Rev. Lett. 111, 134101 (2013)

    Article  ADS  Google Scholar 

  45. C.R. Laing, Phys. Rev. E 81(6), 066221 (2010). doi:10.1103/physreve.81.066221

    Article  ADS  MathSciNet  Google Scholar 

  46. G. Bordyugov, A. Pikovsky, M. Rosenblum, Phys. Rev. E 82(3), 035205 (2010). doi:10.1103/physreve.82.035205

    Article  ADS  MathSciNet  Google Scholar 

  47. G.C. Sethia, A. Sen, Phys. Rev. Lett. 112, 144101 (2014). doi:10.1103/physrevlett.112.144101

    Article  ADS  Google Scholar 

  48. A.M. Hagerstrom, T.E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Nat. Phys. 8, 658 (2012). doi:10.1038/nphys2372

    Article  Google Scholar 

  49. E.A. Viktorov, T. Habruseva, S.P. Hegarty, G. Huyet, B. Kelleher, Phys. Rev. Lett. 112, 224101 (2014)

    Article  ADS  Google Scholar 

  50. M.R. Tinsley, S. Nkomo, K. Showalter, Nat. Phys. 8, 662 (2012). doi:10.1038/nphys2371

    Article  Google Scholar 

  51. E.A. Martens, S. Thutupalli, A. Fourriere, O. Hallatschek, Proc. Nat. Acad. Sci. 110, 10563 (2013). doi:10.1073/pnas.1302880110

    Article  ADS  Google Scholar 

  52. T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, Y. Maistrenko, Sci. Rep. 4, 6379 (2014)

    Article  ADS  Google Scholar 

  53. L. Larger, B. Penkovsky, Y. Maistrenko, Phys. Rev. Lett. 111, 054103 (2013). doi:10.1103/physrevlett.111.054103

    Article  ADS  Google Scholar 

  54. L. Larger, B. Penkovsky, Y. Maistrenko, Nat. Comm. 6, 7752 (2015)

    Article  ADS  Google Scholar 

  55. M. Wickramasinghe, I.Z. Kiss, PLoS ONE 8(11), e80586 (2013). doi:10.1371/journal.pone.0080586

    Google Scholar 

  56. L. Schmidt, K. Schonleber, K. Krischer, V. Garcia-Morales, Chaos 24(1), 013102 (2014). doi:10.1063/1.4858996

    Article  ADS  MathSciNet  Google Scholar 

  57. P. Ashwin, O. Burylko, Chaos 25, 013106 (2015). doi:10.1063/1.4905197

    Article  ADS  MathSciNet  Google Scholar 

  58. L. Schmidt, K. Krischer, Phys. Rev. Lett. 114, 034101 (2015). doi:10.1103/physrevlett.114.034101

    Article  ADS  Google Scholar 

  59. T. Banerjee, Europhys. Lett. 110, 60003 (2015). arXiv:1409.7895v1

  60. A. Yeldesbay, A. Pikovsky, M. Rosenblum, Phys. Rev. Lett. 112, 144103 (2014). doi:10.1103/physrevlett.112.144103

    Article  ADS  Google Scholar 

  61. J. Xie, E. Knobloch, H.C. Kao, Phys. Rev. E 90, 022919 (2014). doi:10.1103/physreve.90.022919

    Article  ADS  Google Scholar 

  62. T. Erneux, P. Glorieux, Laser Dynamics (Cambridge University Press, UK, 2010)

    Book  Google Scholar 

  63. S. Melnik, G. Huyet, A.V. Uskov, Opt. Express 14(7), 2950 (2006)

    Article  ADS  Google Scholar 

  64. B. Lingnau, K. Lüdge, W.W. Chow, E. Schöll, Phys. Rev. E 86(6), 065201(R) (2012). doi:10.1103/physreve.86.065201

    Article  ADS  Google Scholar 

  65. B. Lingnau, W.W. Chow, E. Schöll, K. Lüdge, New J. Phys. 15, 093031 (2013)

    Article  ADS  Google Scholar 

  66. A. Zakharova, T. Vadivasova, V. Anishchenko, A. Koseska, J. Kurths, Phys. Rev. E 81, 011106 (2010). doi:10.1103/physreve.81.011106

    Article  ADS  Google Scholar 

  67. S.H.L. Klapp, S. Hess, Phys. Rev. E 81, 051711 (2010). doi:10.1103/physreve.81.051711

    Article  ADS  Google Scholar 

  68. F.T. Arecchi, G.L. Lippi, G.P. Puccioni, J.R. Tredicce, Opt. Commun. 51(5), 308 (1984)

    Article  ADS  Google Scholar 

  69. C.Z. Ning, H. Haken, Appl. Phys. B 55(2), 117 (1992). doi:10.1007/bf00324060

    Article  ADS  Google Scholar 

  70. H. Haken, Light, vol. 2 (North-Holland, Amsterdam, 1985)

    Google Scholar 

  71. G.C. Sethia, A. Sen, G.L. Johnston, Phys. Rev. E 88(4), 042917 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy Lüdge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Böhm, F., Lüdge, K. (2016). Exploiting Multistability to Stabilize Chimera States in All-to-All Coupled Laser Networks. In: Schöll, E., Klapp, S., Hövel, P. (eds) Control of Self-Organizing Nonlinear Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-28028-8_18

Download citation

Publish with us

Policies and ethics