Fuzzy PID Control of Building Structures

Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


In this chapter, the proposed control algorithms combine the classical (PD/PID) and intelligent (Fuzzy) control techniques to achieve good vibration attenuation. The stability analysis of the structural vibration control system is performed using Lyapunov theory and sufficient conditions for tuning the controllers are derived.


Fuzzy control PID control Stability 


  1. 1.
    K.J. Åström, T. Hagglund, Revisiting the Ziegler-Nichols step response method for PID control. J. Process Control 14, 635–650 (2004)CrossRefGoogle Scholar
  2. 2.
    A.C. Nerves, R. Krishnan, Active control strategies for tall civil structures, in Proceedings of IEEE, International Conference on Industrial Electronics, Control, and Instrumentation, vol. 2 (1995), pp. 962–967Google Scholar
  3. 3.
    R. Guclu, Sliding mode and PID control of a structural system against earthquake. Mathe. Comput. Model. 44, 210–217 (2006)MATHCrossRefGoogle Scholar
  4. 4.
    R. Guclu, H. Yazici, Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers. J. Sound Vib. 318, 36–49 (2008)CrossRefGoogle Scholar
  5. 5.
    R. Kelly, A tuning procedure for stable PID control of robot manipulators. Robotica 13, 141–148 (1995)CrossRefGoogle Scholar
  6. 6.
    C. Roldán, F.J. Campa, O. Altuzarra, E. Amezua, Automatic Identification of the Inertia and Friction of an Electromechanical Actuator, vol. 17, New Advances in Mechanisms, Transmissions and Applications (Springer, Dordrecht, 2014), pp. 409–416Google Scholar
  7. 7.
    F. Ikhouane, V. Mañosa, J. Rodellar, Dynamic properties of the hysteretic Bouc-Wen model. Syst. Control Lett. 56, 197–205 (2007)MATHCrossRefGoogle Scholar
  8. 8.
    F.L. Lewis, D.M. Dawson, C.T. Abdallah, Robot Manipulator Control: Theory and Practice, 2nd edn. (Marcel Dekker Inc., New York, 2004)Google Scholar
  9. 9.
    E.H. Mamdani, Application of fuzzy algorithms for control of simple dynamic plant, IEE Proceedings, vol. 121 (1974), pp. 1585–1588Google Scholar
  10. 10.
    L.X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis (PTR Prentice Hall, Upper Saddle River, 1994)Google Scholar
  11. 11.
    E.D. Sontag, Y. Wang, On characterizations of the input-to-state stability property. Syst. Control Lett. 24, 351–359 (1995)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    W. Yu, M.A. Moreno-Armendarizb, F.O. Rodrigueza, Stable adaptive compensation with fuzzy CMAC for an overhead crane. Inf. Sci. 181, 4895–4907 (2011)MATHCrossRefGoogle Scholar
  13. 13.
    K.J. Åström, T. Hägglund, C.C. Hang, W.K. Ho, Automatic tuning and adaptation for PID controllers-a survey. Control Eng. Pract. 1, 699–714 (1993)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Departamento de Control AutomaticoCINVESTAV-IPNMexico CityMexico

Personalised recommendations