Skip to main content

Parametric Vibration Protection of Linear Systems

  • Chapter
  • First Online:
Theory of Vibration Protection
  • 1703 Accesses

Abstract

A mechanical system whose behavior is described by linear differential equations with constant coefficients is considered. The system is subjected to external excitation; this excitation can change in an arbitrary way over time. Absolute invariance implies absolute independence of some coordinates from the excitation applied to the system. The absolute invariance means that generalized coordinates cannot be implemented, even without introducing any vibration protection devices. The Shchipanov–Luzin criterion of absolute invariance and Petrov’s two-channel principle are discussed. Problems of parametric elimination of unwanted vibration modes of a spinning rotor and a plate subjected to an inertial moving load are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Razumovsky, O. S. (1975). Modern determinism and extreme principles in physics. Moscow, Russia: Nauka.

    Google Scholar 

  2. Rayleigh Lord (J.W. Strutt) (1945). The theory of sound. New York: Dover.

    Google Scholar 

  3. Shchipanov, G. V. (1939). Theory and methods of design of the automatic regulators. Automatics and Telemechanics, 1.

    Google Scholar 

  4. Luzin, N. N.,& Kuznetsov, P. I. (1951). Absolute invariance and invariance up to ε in the theory of differential equations. DAN USSR, т.80, 3.

    Google Scholar 

  5. Karnovsky, M. I. (1942). Acoustical compensating devices. DAN USSR, Ń‚. ĐĄĐĄXVII, 1.

    Google Scholar 

  6. Solodovnikov, V. V. (Ed.). (1967). Technical cybernetics (Vol. 1–4). Moscow, Russia: Mashinostroenie.

    Google Scholar 

  7. D’Azzo, J. J., & Houpis, C. H. (1995). Linear control systems. Analysis and design (4th ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  8. Egorov, A. I. (1965). Optimal processes in systems with distributed parameters and certain problems of the invariance theory. AN USSR, Series Math, 29(6), 1205–1260.

    MATH  Google Scholar 

  9. Fowles, G. R., & Cassiday, G. L. (1999). Analytical mechanics (6th ed.). Belmont, CA: Brooks/Cole—Thomson Learning.

    Google Scholar 

  10. Bat’, M. I., Dzhanelidze, G. J., & Kel’zon, A. S. (1973). Theoretical mechanics (Special topics, Vol. 3). Moscow, Russia: Nauka.

    Google Scholar 

  11. Panovko, Ya. G., & Gubanova, I. I. (1973). Stability and oscillations of elastic systems: Modern concepts, paradoxes, and errors (6th ed.). NASA TT-F, 751, M.: URSS, 2007.

    Google Scholar 

  12. Karnovsky, I. A., & Lebed, O. (2001). Formulas for structural dynamics. Tables, graphs and solutions. New York: McGraw Hill.

    Google Scholar 

  13. Karnovsky, I. A., & Lebed, O. (2010). Advanced methods of structural analysis. New York: Springer.

    Book  Google Scholar 

  14. Babakov, I. M. (1965). Theory of vibration. Moscow, Russia: Nauka.

    Google Scholar 

  15. Shinners, S. M. (1978). Modern control system theory and application Reading, MA: Addison Wesley. (Original work published 1972)

    Google Scholar 

  16. Petrov, B. N. (1960). The invariance Principle and the conditions for its application during the calculation of linear and nonlinear systems. Proceedings of International Federation of Automation Control Congress, Moscow (Vol. 2, pp. 1123–1128). London: Butterworth, 1961

    Google Scholar 

  17. Karnovsky, I. A. (1976). The invariance of the vibration modes of a shallow shell with respect to external excitation. Izvestiya VUZov. Mashinostroenie, 2.

    Google Scholar 

  18. Karnovsky, I. A. (1968). Vibration of a plate carrying a moving load. Case of large deflections. Soviet Applied Mechanics, 4(10), 56–60.

    Article  Google Scholar 

  19. Karnovsky, I. A. (1971). Vibration of shell subjected to moving load. Strength of materials and theory of structures (Vol. 13). Kiev: Budivel’nik.

    Google Scholar 

  20. Karnovsky, I. A. (2012). Theory of arched structures. Strength, stability, vibration. New York: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karnovsky, I.A., Lebed, E. (2016). Parametric Vibration Protection of Linear Systems. In: Theory of Vibration Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-28020-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28020-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28018-9

  • Online ISBN: 978-3-319-28020-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics