Skip to main content

Shock and Spectral Theory

  • Chapter
  • First Online:
Theory of Vibration Protection

Abstract

This chapter is devoted to the analysis of one degree of freedom systems subjected to shock excitation [1, 2, Chap. 9, 3], etc. Some important concepts are discussed. among which are types of shock excitation and different approaches to the shock problem. Fourier transformation of aperiodic functions and corresponding concepts are considered and are then applied to the shock phenomenon. The spectral shock theory method and the concepts of residual and primary shock spectrums are discussed [4]. The transient vibration caused by different force and kinematic shock excitation (Heaviside step excitation, step excitation of finite duration, impulse excitation) are considered. Dynamic and transmissibility coefficients are derived and discussed in detail.

I have concluded that this question of impulse forces is very obscure, and I think that, up to the present, none of those who have treated this subject have been able to clear up its dark corners which lie almost beyond the reach of human imagination.

“Dialogues Concerning Two New Sciences” Galileo Galilei (1638)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldsmith, W. (2014). Impact: The theory and physical behaviour of colliding solids. New York: Dover.

    MATH  Google Scholar 

  2. Harris, C. M. (Editor in Chief). (1996). Shock and vibration handbook (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  3. Zukas, J. A. (1990). High velocity impact dynamics. New York: Wiley.

    Google Scholar 

  4. Ayre, R. S. (1996). Transient response to step and pulse functions. In Harris C.M. (Ed.), Shock and vibration handbook (4th ed.). New York: McGraw-Hill. Chapter 8.

    Google Scholar 

  5. Panovko, Ya. G. (1967). Fundamentals of applied theory of the vibrations and shock. Moscow: Mashinostroenie.

    Google Scholar 

  6. Lalanne, C. (2002). Mechanical vibration & shock (Vol. 1–4). New York: Hermes Penton Science.

    Google Scholar 

  7. Balandin, D. V., Bolotnik, N. N., & Pilkey, W. D. (2001). Optimal protection from impact, shock and vibration. Amsterdam: Gordon and Breach Science.

    Google Scholar 

  8. Clough, R. W., & Penzien, J. (1975). Dynamics of structures. New York: McGraw-Hill.

    MATH  Google Scholar 

  9. Fowles, G. R., & Cassiday, G. L. (1999). Analytical mechanics (6th ed.). Belmont, CA: Brooks/Cole—Thomson Learning.

    Google Scholar 

  10. Karnovsky, I. A., & Lebed, O. (2010). Advanced methods of structural analysis. New York: Springer.

    Book  Google Scholar 

  11. Filippov, A. P. (1970). Vibration of the deformable systems. Moscow: Mashinostroenie.

    Google Scholar 

  12. Kil’chevsky, N. A. (1969). The theory of the collision of solid bodies (2nd ed.). Kiev, Ukraine: Naukova Dumka.

    Google Scholar 

  13. Lenk, A. (1977). Elektromechanische systeme. Band 2: Systeme mit verteilten parametern. Berlin: VEB Verlag Technnic.

    Google Scholar 

  14. Timoshenko, S. P., & Goodier, J. N. (1987). Theory of elasticity (Classic textbook reissue series 3rd ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  15. Rabinovich, I. M., Sinitsyn, A. P., & Terenin, B. M. (1958). Analysis of structures subjected to short-duration and impact forces. Moscow: Voenno-Inzhenernaya Akademiya (VIA).

    Google Scholar 

  16. Strelkov, S. P. (1964). Introduction to the theory of vibrations. Moscow: Nauka.

    Google Scholar 

  17. Thomson, W. T. (1981). Theory of vibration with application (2nd ed.). New York: Prentice-Hall.

    MATH  Google Scholar 

  18. Korn, G. A., & Korn, T. M. (2000). Mathematical handbook (2nd ed.). New York: McGraw-Hill Book/Dover. (Original work published 1968)

    Google Scholar 

  19. Tse, F. S., Morse, I. E., & Hinkle, R. T. (1963). Mechanical vibrations. Boston: Allyn and Bacon.

    Google Scholar 

  20. Il’insky, V. S. (1982). Protection of radio-electronic equipment and precision equipment from the dynamic excitations. Moscow: Radio.

    Google Scholar 

  21. Brown, J. W., & Churchill, R. V. (2009). Complex variables and applications—Solutions manual (8th ed.). Boston: McGraw-Hill.

    Google Scholar 

  22. Feldbaum, A. A., & Butkovsky, A. G. (1971). Methods of the theory of automatic control. Moscow: Nauka.

    Google Scholar 

  23. Karnovsky, I. A. (2012). Theory of arched structures. Strength, stability, vibration. Berlin: Springer.

    Book  Google Scholar 

  24. Frolov, K. V. (Ed.). (1981). Protection against vibrations and shocks. vol. 6. In Handbook: Chelomey, V.N. (Editor in Chief) (1978–1981) Vibration in engineering, vols. 1–6. Moscow: Mashinostroenie.

    Google Scholar 

  25. Ogata, K. (1992). System dynamics (2nd ed.). Englewood Cliffs, NJ: Prentice Hall Int.

    MATH  Google Scholar 

  26. Newland, D. E. (1989). Mechanical vibration analysis and computation. Harlow, England: Longman Scientific and Technical.

    Google Scholar 

  27. Crandall, S. H. (Ed.). (1963). Random vibration (Vol. 2). Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  28. Lebed, E. (2009). Sparse signal recovery in a transform domain. Theory and application. Saarbrucken, Deutschland: VDM Verlag Dr.Muller, Aktiengesellschaft &Co. KG.

    Google Scholar 

  29. Biot, M. A. (1943). Analytical and experimental methods in engineering seismology. Transactions of the American Society of Civil Engineers, 108(1), 365–385.

    Google Scholar 

  30. Smallwood, D. (1981, May). An improved recursive formula for calculating shock response spectra. «The Shock and Vibration Bulletin», Bulletin No. 51, Part 2.

    Google Scholar 

  31. Lebed, E., Mackenzie, P. J., Sarunic, M. V., & Beg, M. F. (2010). Rapid volumetric OCT image acquisition using compressive sampling. Optics Express, 18(20), 21003–210012.

    Article  Google Scholar 

  32. Lebed, E., Lee, S., Sarunic, M. V., & Beg, M. F. (2013). Rapid radial optical coherence tomography image acquisition. Journal of Biomedical Optics, 18(3), 03604–03613.

    Article  Google Scholar 

  33. Lebed, E. (2013). Novel methods in biomedical image acquisition and analysis. PhD Thesis, Simon Fraser University, Burnaby, British Columbia, Canada.

    Google Scholar 

  34. Shabana, A. A. (1991). Theory of vibration: Vol. 2: Discrete and continuous systems. Mechanical Engineering Series. New York: Springer.

    Google Scholar 

  35. Timoshenko, S., Young, D. H., & Weaver, W., Jr. (1974). Vibration problems in engineering (4th ed.). New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karnovsky, I.A., Lebed, E. (2016). Shock and Spectral Theory. In: Theory of Vibration Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-28020-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28020-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28018-9

  • Online ISBN: 978-3-319-28020-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics