Skip to main content

Vibration Isolation of a System with One or More Degrees of Freedom

  • Chapter
  • First Online:
Theory of Vibration Protection

Abstract

This chapter describes some general concepts, including design diagrams of vibration protection systems, the various means of vibrational excitation, and the complex amplitude method. We consider types of linear classic single-axis vibration isolators and special types of isolators (equal-frequency vibration isolator, isolator with dry friction, etc.) [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crede, C. E., & Ruzicka, J. E. (1996). Theory of vibration isolation (Chapter 30). In Handbook: Harris, C.M.(Editor in Chief). (1996) Shock and vibration (4th ed). New York: McGraw Hill.

    Google Scholar 

  2. Mead, D. J. (1999). Passive vibration control. Chichester, England: Wiley.

    MATH  Google Scholar 

  3. Harris, C. M. (Ed.). (1996). Shock and vibration handbook (4th ed). New York: McGraw-Hill.

    Google Scholar 

  4. Frolov, K. V. (Ed.) (1981). Protection against vibrations and shocks. vol.6. In Handbook: Chelomey, V.N. (Chief Editor), (1978-1981) Vibration in Engineering, Vols. 1-6. Moscow: Mashinostroenie.

    Google Scholar 

  5. Ogata, K. (1992). System dynamics (2nd ed.). Englewood Cliffs, NJ: Prentice Hall.

    MATH  Google Scholar 

  6. Alabuzhev, P., Gritchin, A., Kim, L., Migirenko, G., Chon, V., & Stepanov, P. (1989). Vibration protecting and measuring systems with quasi-zero stiffness. Applications of vibration series. New York: Hemisphere Publishing.

    Google Scholar 

  7. Thomson, W. T. (1981). Theory of vibration with application (2nd ed.). Englewood Cliff, NJ: Prentice-Hall.

    MATH  Google Scholar 

  8. Timoshenko, S., Young, D. H., & Weaver, W., Jr. (1974). Vibration problems in engineering (4th ed.). New York: Wiley.

    Google Scholar 

  9. Steidel, R. F., Jr. (1989). An introduction to mechanical vibrations (3rd ed.). New York: Wiley.

    MATH  Google Scholar 

  10. Fowles, G. R., & Cassiday, G. L. (1999). Analytical mechanics (6th ed.). Belmont, CA: BROOKS/CO, Thomson Learning.

    Google Scholar 

  11. Tse, F. S., Morse, I. E., & Hinkle, R. T. (1963). Mechanical vibrations. Boston: Allyn and Bacon.

    Google Scholar 

  12. Liangliang, Z., & Yinzhao, L. (2013). Three classical papers on the history of the phasor method [J]. Transactions of China Electrotechnical Society, 28(1), 94–100.

    Google Scholar 

  13. Popov, V. P. (1985). Fundamentals of circuit theory. Moscow: Vysshaya Shkola.

    Google Scholar 

  14. Clough, R. W., & Penzien, J. (1975). Dynamics of Structures. New York: McGraw-Hill.

    MATH  Google Scholar 

  15. Shearer, J. L., Murphy, A. T., & Richardson, H. H. (1971). Introduction to system dynamics. Reading, MA: Addison-Wesley.

    Google Scholar 

  16. Birger, I. A., & Panovko, Ya. G. (Eds.). (1968). Strength, stability, vibration. Handbook (Vols. 1–3). Moscow: Mashinostroenie.

    Google Scholar 

  17. Chelomey, V. N. (Editor in Chief) (1978–1981). Vibrations in engineering. Handbook (Vols. 1–6). Moscow: Mashinostroenie.

    Google Scholar 

  18. Karnovsky, I. A., & Lebed, O. (2001). Formulas for structural dynamics. Tables, graphs and solutions. New York: McGraw Hill.

    Google Scholar 

  19. Karnovsky, I. A., & Lebed, O. (2004). Non-classical vibrations of arches and beams. Eigenvalues and eigenfunctions. New York: McGraw-Hill Engineering Reference.

    Google Scholar 

  20. Mises, R. (1923). Uber die Stabilitats-probleme der Elastizitatstheorie. Zeitschr. angew Math. Mech., s. 406–462.

    Google Scholar 

  21. Panovko, Ya. G., & Gubanova, I. I. (2007). Stability and oscillations of elastic systems: Modern concepts, paradoxes, and errors (6th ed.). NASA TT-F, 751, 1973, M.: URSS.

    Google Scholar 

  22. Karnovsky, I. A., & Lebed, O. (2010). Advanced methods of structural analysis. New York: Springer.

    Book  Google Scholar 

  23. Zotov, A. N. (2005). Vibration isolators with the quasi-zero stiffness. Neftegazovoe Delo, RSS, Ñ‚.3. Standards.

    Google Scholar 

  24. Carrella, A., Brennan, M. J., Kovacic, I., & Waters, T. P. (2009). On the force transmissibility of a vibration isolator with quasi-zero stiffness. Journal of Sound and Vibration, 322, 4–5.

    Google Scholar 

  25. Carrella, A., Brennan, M. J., & Waters, T. P. (2007). Static analysis of a passive vibration isolator with quasi- zero stiffness characteristic. Journal of Sound and Vibration, 301, 3–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karnovsky, I.A., Lebed, E. (2016). Vibration Isolation of a System with One or More Degrees of Freedom. In: Theory of Vibration Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-28020-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28020-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28018-9

  • Online ISBN: 978-3-319-28020-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics