Skip to main content

A Robust Noncooperative Meta-game for Climate Negotiation in Europe

  • Chapter
  • First Online:

Part of the book series: Annals of the International Society of Dynamic Games ((AISDG,volume 14))

Abstract

In this paper we define and solve a ‘robust game design’ problem that could be used to assess the fair sharing of the abatement burden among the 28 EU countries in their coming climate negotiations. The problem consists in finding a distribution of a global ‘safety emission budget’ for the panning period 2010–2050, among the 28 countries in such a way to obtain a balanced relative loss of welfare (computed in percent of the discounted consumption in the reference case) when the countries supply strategically their permit endowment on a permit trading system with full banking and borrowing. We assume that the countries play a noncooperative game, where the payoffs are constituted of the gains from the terms of trade plus the gains in the permit trading and minus the abatement cost, expressed as the compensative variation of income. These payoff functions are estimated from an ensemble of numerical simulations of a detailed CGE model, GEMINI-E3 representing the economic interactions among the 28 EU countries. To deal with the uncertainty introduced by the statistical emulation technique we propose to use the concept of robust equilibrium, where the results of robust optimization are exploited in the definition of an equilibrium solution, when the payoff is subject to uncertainties. A numerical illustration is performed and an interpretation of the impact of the robustification approach on the solution of the game design problem is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that, as the second derivative of the AC appears in the mathematical game formulation, we have thus imposed a convexity constraint on this second derivative in the regression model in order to ensure the convexity of the overall problem. Moreover, polynomial forms of lower degree have been tested but resulting in worse estimation quality.

References

  • Aghassi M, Bertsimas D (2006) Robust game theory. Math Program Ser B 107:231–273

    Article  MathSciNet  MATH  Google Scholar 

  • Babonneau F, Haurie A, Vielle M (2013) A robust meta-game for climate negotiations. Comput Manag Sci 10(4):299–329

    Article  MathSciNet  MATH  Google Scholar 

  • Babonneau F, Haurie A, Vielle M. Assessment of Balanced Burden Sharing in the 2050 EU Climate/Energy Roadmap: A Metamodeling Approach, Climatic Change, available online, DOI 10.1007/s10584-015-1540-x

  • Babonneau F, Vial J-P, Apparigliato R (2010). Robust optimization for environmental and energy planning. In: Filar JA, Haurie A (eds) Uncertainty and environmental decision making. Springer, Berlin

    Google Scholar 

  • Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Bernard A, Vielle M (2003) Measuring the welfare cost of climate change policies: a comparative assessment based on the computable general equilibrium model GEMINI-E3. Environ Model Assess 8:199–217

    Article  Google Scholar 

  • Bernard A, Vielle M (2008) GEMINI-E3, a general equilibrium model of international national interactions between economy, energy and the environment. Comput Manag Sci 5:173–206

    Article  MathSciNet  MATH  Google Scholar 

  • Böhringer C, Rutherford TF (2002) Carbon abatement and international spillovers. Environ Resour Econ 22:391–417

    Article  Google Scholar 

  • Capros P, Paroussos L, Fragkos P, Tsani S, Boitier B, Wagner F, Busch S, Resch G, Blesl M, Bollen J (2014). Description of models and scenarios used to assess European decarbonisation pathways. Energy Strategy Rev 2(3–4):220–230

    Article  Google Scholar 

  • Drouet L, Haurie A, Moresino F, Vial J-P, Vielle M, Viguier L (2008) An oracle based method to compute a coupled equilibrium in a model of international climate policy. Comput Manag Sci (Special issue “Managing Energy and the Environment”) 5(1):67–94

    MathSciNet  MATH  Google Scholar 

  • Drouet L, Haurie A, Vial J-P, Vielle M (2010) A game of international climate policy solved by a homogenous oracle-based method for variational inequalities. In: Breton M, Szajowski K (eds) Advances in dynamic games. Annals of the International Society of Dynamic Games, vol 11. Birkhäuser, Basel, pp 469–488

    Google Scholar 

  • European Commission (2011a). COM/2011/112. A Roadmap for moving to a competitive low carbon economy in 2050. Communication from the Commission to the European Parliament, the Council, the European Economic and Social committee and the committee of the Regions, European Commission, Brussels, Belgium

    Google Scholar 

  • European Commission (2011b). The 2012 ageing report: underlying assumptions and projection methodologies, European Economy 4, European Commission, Brussels, Belgium

    Google Scholar 

  • Ferris M, Munson T (2000) Complementarity problems in GAMS and the PATH solver. J Econ Dyn Control 24:165–188

    Article  MathSciNet  MATH  Google Scholar 

  • Haurie A, Babonneau F, Edwards N, Holden PB, Kanudia A, Labriet M, Pizzileo B, Vielle M (2013). Fairness in climate negotiations: a meta-game analysis based on community integrated assessment. In: Semmler W, Bernard L (eds.) Handbook on the macroeconomics of climate change. Oxford University Press, Oxford (to appear)

    Google Scholar 

  • Helm C (2003) International emissions trading with endogenous allowance choices. J Public Econ 87:2737–2747

    Article  Google Scholar 

  • Energy Agency (2013) World energy outlook, IEA annual report

    Google Scholar 

  • Knopf B, Chen Y-HH, De Cian E, Förster H, Kanudia A, Karkatsouli I, Keppo I, Koljonen T, Schumacher K, Van Vuuren DP (2013) Beyond 2020 - startegies and costs for transforming the European energy system. Clim Change Econ, 4(Supp. 1), 38 pages

    Google Scholar 

  • Matthews HD, Gillett NP, Stott PA, Zickfeld K (2009) The proportionality of global warming to cumulative carbon emissions. Nature 459:829–832

    Article  Google Scholar 

  • Narayanan B, Aguiar A, McDougall R (eds) (2012) Global trade, assistance, and production: the GTAP 8 Data Base. Center for Global Trade Analysis, Purdue University

    Google Scholar 

  • Nash J (1950) Equilibrium points in n-person games. Proc Natl Acad Sci 36:48–49

    Article  MathSciNet  MATH  Google Scholar 

  • Rawls J (1071) A theory of justice. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Venmans F (2012) A literature-based multi-criteria evaluation of the EU ETS. Renew Sustain Energ Rev 16(8):5493–5510

    Article  Google Scholar 

  • Weyant J, Knopf B, de Cian E, Keppo I, van Vuuren D (2013) Introduction to the EMF28 Study on scenarios for transforming the European energy system. Clim Change Econ, 4(Supp. 1), 3 pages.

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from Qatar National Research Fund under Grant Agreement no 6-1035-512.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Babonneau .

Editor information

Editors and Affiliations

Appendix

Appendix

15.1.1 GAMS Code of the Robust Game

We report below the GAMS implementation code of the robust formulation to the game. This model is solved with the PATH solver (Ferris and Munson 2000).

sets

J  PLAYERS

T  PERIODS 2020 TO 2050

;

Table

EX(J,T)  EXCHANGE RATES

GTT(J,T) GAINS FROM TERMS OF TRADE LINEAR TERM

EB(J,T)  BAU emissions

A0(J,T)  COEFF. CONST. MAC FUNCTION

A1(J,T)  COEFF. LIN. MAC FUNCTION

A2(J,T)  COEFF. QUAD. MAC FUNCTION

A3(J,T)  COEFF. CUB. MAC FUNCTION

A1_var(J,T) VARIABILITY OF COEFF. LIN. MAC FUNCTION

A2_var(J,T) VARIABILITY OF COEFF. QUAD. MAC FUNCTION

A3_var(J,T) VARIABILITY OF COEFF. CUB. MAC FUNCTION

;

scalar

BUD  GLOBAL EMISSION BUDGET

beta   DISCOUNT FACTOR

;

parameter

BS(J) SHARES OF EM. BUDGET

;

positive variable

a(T,J) ALLOWANCES

e(T,J) EMISSION LEVELS

q(T,J) ABATEMENT LEVELS

P(T)   PERMIT PRICES

nu(J)  MULTIPLIER ALLOWANCE

;

variable

DAcost(T,J)    MARGINAL ABATEMENT COSTS

DDAcost(T,J)   SECOND DERIVATIVE ABATEMENT COST

totA(T)        TOTAL ALLOWANCES

totE(T)        TOTAL EMISSIONS

cE             CUMULATIVE EMISSIONS

dP(T)         DIFF PRICE

dE(T,J)        DIFF EMISS

TR(T,J)        NET TRANSFERS

;

equations

* CHECK THAT THE SOLUTION USES  THE BUDGET SHARE

BcumA(j).. BUD*BS(J)- (10*sum(T, a(T,J))) =g= 0;

* DEFINES TOTAL ALLOWANCES AT T

EtotA(T).. totA(T) -  sum(J,a(T,J)) =e= 0;

* DEFINES TOTAL EMISSIONS

EtotE(T).. totE(T) -  sum(J,e(T,J)) =e= 0;

* DEFINES EMISSIONS FROM ABATEMENT AT T

EQe(T,J).. -EB(J,T)+ e(T,J) + q(T,J)  =e= 0;

* DEFINES TOTAL EMISSIONS

EQce..   cE  =e= 10*sum(T, totE(T));

* DEFINES MAC

EQDAcost(T,J).. DAcost(T,J) - (A1(J,T)*q(T,J)+

    A2(J,T)*q(T,J)**2+A3(J,T)*q(T,J)**3)/EX(J,T)

   - k2*sqrt(abs(A1_var(J,T)*q(T,J))**2 +

   abs(A2_var(J,T)*q(T,J)**2)**2 +abs(

   A3_var(J,T)*q(T,J)**3)**2)/EX(J,T) =e= 0;

* DEFINES MINUS DERIVATIVE OF MAC

EDDAcost(T,J)..   DDAcost(T,J)+(A1(J,T)+2*A2(J,T)

   *q(T,J)+3*A3(J,T)*q(T,J)**2)/EX(J,T) + k2*(2*

   abs(A1_var(J,T))**2*q(T,J)+4*abs(A2_var(J,T))**2

   *q(T,J)**3 + 6*abs(A3_var(J,T))**2*q(T,J)**5)

   / (2*EX(J,T)*sqrt( abs(A1_var(J,T)*q(T,J))**2

   +abs(A2_var(J,T)*q(T,J)**2)**2

   +abs(A3_var(J,T)*q(T,J)**3)**2)) =e= 0;

* DEFINES DERIVATIVE OF MARKET PRICE WRT ALLOWANCE

EdP(T)..  dP(T) - 1/sum(J,1/DDAcost(T,J)) =e= 0;

* DEFINES DERIVATIVE OF EMISSION WRT ALLOWANCE

EdE(T,J)..  dE(T,J) -  1/sum(I,DDAcost(T,J)

   /DDAcost(T,I)) =e= 0;

* DEFINES PSEUDO-GRADIENT OF PAYOFFS W.R.T.

* ALLOWANCES, TAKING INTO ACCOUNT EFFECTS ON PRICES.

PSGRAD(T,J).. -(1+beta)**(-10*(ord(T)-1))

   *(DAcost(T,J)

     + dP(T)*(a(T,J)-e(T,J)) - GTT(J,T))

   + Nu(J)

     * (sqrt(var*sum(I,sum(TI,(10*a(TI,I))**2)))

        + a(T,J)*k*var)

   =e= 0;

* MARKET CLEARS (TOTAL EMISSIONS EQUAL TOTAL

* ALLOWANCES AT T)

MARKETC(T).. totA(T)- totE(T) =e= 0;

* PRICE IS EQUAL TO MAC

MAXPRO(T,J)..  DAcost(T,J) - P(T) =e= 0;

* TRANSFERS

TRANS(T,J).. TR(T,J)-P(T)*(a(T,J)-e(T,J)) =e= 0;

model robust-game

/

BcumA.Nu,

EtotA.totA,

EtotE.totE,

EQe.q,

EQce.cE,

EQDAcost.DAcost,

EDDAcost,

EdP.dP,

EdE.dE,

PSGRAD.a,

MARKETC.P,

MAXPRO.e,

TRANS.TR

/;

option mcp=path;

solve robust-game using mcp;

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Babonneau, F., Haurie, A., Vielle, M. (2016). A Robust Noncooperative Meta-game for Climate Negotiation in Europe. In: Thuijsman, F., Wagener, F. (eds) Advances in Dynamic and Evolutionary Games. Annals of the International Society of Dynamic Games, vol 14. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-28014-1_15

Download citation

Publish with us

Policies and ethics