Skip to main content

Computed Tomography: Quality Control

  • Chapter
  • First Online:
Quality Evaluation in Non-Invasive Cardiovascular Imaging
  • 571 Accesses

Abstract

Cardiovascular CT has the potential to deliver very high resolution images of the coronary artery system with minimal radiation dosage and study time. To achieve diagnostic quality images, CT acquisitions must be acquired using appropriate protocols, an appropriate scanner instrumentation and data processed correctly. Technologists should be aware of the trade-offs in acquisition parameters and understand optimal processing techniques. Physicians should also be able to recognize high quality cardiac CT studies and identify image artifacts as well as acquisition/processing errors when present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cormack AM. Reconstruction of densities from their projections, with applications in radiological physics. Phys Med Biol. 1973;18(2):195–207.

    Article  CAS  PubMed  Google Scholar 

  2. Hounsfield GN. Computerized transverse axial scanning (tomography)—part 1 description of the system. Br J Radiol. 1973;46:1016–22.

    Article  CAS  PubMed  Google Scholar 

  3. Wang S, Detrano RC, Tang W, Doherty TM, Puentes G, Wong N, Brundage BH. Detection of coronary calcification with electron beam computed tomography: evaluation of inter-examination reproducibility and comparison of three image acquisition protocols. Am Heart J. 1996;132:550–8.

    Article  CAS  PubMed  Google Scholar 

  4. Mahaisavariya P, Detrano RC, Kang X, Garner D, Vo A, Georgiou D, Molloi S, Brundage BH. Quantitation of in vitro coronary artery calcium using ultrafast computed tomography. Cathet Cardiovasc Diagn. 1994;32:387–93.

    Article  CAS  PubMed  Google Scholar 

  5. Agatston AS, Janowitz WR, Hildner FJ, Zusmer N, Viamonte M, Detrano RC. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.

    Article  CAS  PubMed  Google Scholar 

  6. McCollough C, Zink F. Performance evaluation of a multi-slice CT system. Med Phys. 1999;26:2223–30.

    Article  CAS  PubMed  Google Scholar 

  7. Nieman K, Oudkerk M, Rensing BJ, et al. Coronary angiography with multi-slice computed tomography. Lancet. 2001;357(9256):599–603.

    Article  CAS  PubMed  Google Scholar 

  8. Hoffmann U, Moselewski F, Cury RC, et al. Predictive value of 16- slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation. 2004;110(17):2638–43.

    Article  PubMed  Google Scholar 

  9. Raff GL, Gallagher MJ, O'Neill WW, et al. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol. 2005;46(3):552–7.

    Article  PubMed  Google Scholar 

  10. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64- multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724–32.

    Article  PubMed  Google Scholar 

  11. John M. Boone, Anthony Seibert: an accurate method for computer-generating tungsten anode X-ray spectra from 30 to 140 kV. Med Phys. 1997;24(11):1661–70.

    Article  Google Scholar 

  12. Sun Z, Jiang W. Diagnostic value of multislice computed tomography angiography in coronary artery disease: a metaanalysis. Eur J Radiol. 2006;60(2):279–86.

    Article  PubMed  Google Scholar 

  13. Achenbach S, Ropers D, Pohle FK, et al. Detection of coronary artery stenoses using multi-detector CT with 16 × 0.75 collimation and 375 ms rotation. Eur Heart J. 2005;26(19):1978–86.

    Article  PubMed  Google Scholar 

  14. Sun Z, Lin C, Davidson R, et al. Diagnostic value of 64-slice CT angiography in coronary artery disease: a systematic review. Eur J Radiol. 2008;67(1):78–84.

    Article  PubMed  Google Scholar 

  15. Abdulla J, Abildstrom SZ, Gotzsche O, et al. 64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: a systematic review and meta-analysis. Eur Heart J. 2007;28(24):3042–50.

    Article  PubMed  Google Scholar 

  16. Stehli J M.D., Fuchs TA M.D., Bull S M.D., Clerc OF M.D., Possner M M.D., Buechel RR M.D., Gaemperli O M.D., Kaufmann PA M.D. Accuracy of coronary CT angiography using a submillisievert fraction of radiation exposure comparison with invasive coronary angiography. J Am Coll Cardiol. 2014;64(8):772–80.

    Article  PubMed  Google Scholar 

  17. Russell MT, Fink JR, Rebeles F, Kanal K, Ramos M, Anzai Y. Balancing radiation dose and image quality: clinical applications of neck volume CT. AJNR Am J Neuroradiol. 2008;29:727–31.

    Article  CAS  PubMed  Google Scholar 

  18. Husmann L, Valenta I, Gaemperli O, et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J. 2008;29:191–7.

    Article  PubMed  Google Scholar 

  19. Herzog BA, Wyss CA, Husmann L, et al. First head-to-head comparison of effective radiation dose from low-dose 64-slice CT with prospective ECG-triggering versus invasive coronary angiography. Heart. 2009;95:1656–61.

    Article  CAS  PubMed  Google Scholar 

  20. Schoenhagen P. Back to the future: coronary CT angiography using prospective ECG triggering. Eur Heart J. 2008;29:153–4.

    Article  PubMed  Google Scholar 

  21. Hong YJ, Kim SJ, Lee SM, et al. Low-dose coronary computed tomography angiography using prospective ECG-triggering compared to invasive coronary angiography. Int J Cardiovasc Imaging. 2011;27:425–31.

    Article  PubMed  Google Scholar 

  22. Shuman WP, Branch KR, May JM, et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology. 2008;248:431–7.

    Article  PubMed  Google Scholar 

  23. Pontone G, Andreini D, Bartorelli AL, et al. Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective electrocardiogram triggering. J Am Coll Cardiol. 2009;54:346–55.

    Article  PubMed  Google Scholar 

  24. DeFrance T, Dubois E, Gebow D, et al. Helical prospective ECG-gating in cardiac computed tomography: radiation dose and image quality. Int J Cardiovasc Imaging. 2010;26:99–107.

    Article  PubMed  Google Scholar 

  25. Hlaihel C, Boussel L, Cochet H, et al. Dose and image quality comparison between prospectively gated axial and retrospectively gated helical coronary CT angiography. Br J Radiol. 2011;84:51–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feng Q, Yin Y, Hua X, et al. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose. Clin Radiol. 2010;65:809–14.

    Article  CAS  PubMed  Google Scholar 

  27. Duarte R, Fernandez G, Castellon D, et al. Prospective coronary CT angiography 128-MDCT versus retrospective 64-MDCT: improved image quality and reduced radiation dose. Heart Lung Circ. 2011;20:119–25.

    Article  PubMed  Google Scholar 

  28. Qin J, Liu LY, Meng XC, et al. Prospective versus retrospective ECG gating for 320-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Clin Imaging. 2011;35:193–7.

    Article  PubMed  Google Scholar 

  29. Mulkens TH, Bellinck P, Baeyaert M, et al. Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology. 2005;237:213–23.

    Article  PubMed  Google Scholar 

  30. Kalra MK, Rizzo S, Maher MM, et al. Chest CT performed with z-axis modulation: scanning protocol and radiation dose. Radiology. 2005;237:303–8.

    Article  PubMed  Google Scholar 

  31. Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J Theor Biol. 1970;29:471–82.

    Article  CAS  PubMed  Google Scholar 

  32. Manglos SH, Gagne GM, Krol A, Thomas FD, Narayanaswamy R. Transmission maximum-likelihood reconstruction with ordered subsets for cone beam CT. Phys Med Biol. 1995;40:1225–41.

    Article  CAS  PubMed  Google Scholar 

  33. Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in x-ray CT. Phys Med. 2012;29(2):94–108.

    Article  Google Scholar 

  34. The IAC Standards and Guidelines for CT Accreditation. 2014. Intersocietal Accreditation Commission. http://www.intersocietal.org/ct/standards/IACCTStandards2014.pdf.

  35. Shim SS, Kim Y, Lim SM. Improvement of image quality with beta-blocker premedication on ECG-gated 16-MDCT coronary angiography. AJR Am J Roentgenol. 2005;184:649–54.

    Article  PubMed  Google Scholar 

  36. Shapiro M, Pena A, Nichols JH, Worrell S, Bamberg F, Dannemann N, et al. Efficacy of pre-scan b-blockade and impact of heart rate on image quality in patients undergoing coronary multidetector computed tomography angiography. Eur J Radiol. 2008;66:37–4.

    Article  PubMed  Google Scholar 

  37. Leschka S, Husmann L, Desbiolles LM, Gaemperli O, Schepis T, Koepfli P, Boehm T, Marincek B, Kaufmann PA, Alkadhi H. Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol. 2006;16(9):1964–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Case PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Case, J.A. (2016). Computed Tomography: Quality Control. In: Tilkemeier, P., Hendel, R., Heller, G., Case, J. (eds) Quality Evaluation in Non-Invasive Cardiovascular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-28011-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28011-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28009-7

  • Online ISBN: 978-3-319-28011-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics