Secure \((M+1)\)st-Price Auction with Automatic Tie-Break

  • Takashi NishideEmail author
  • Mitsugu Iwamoto
  • Atsushi Iwasaki
  • Kazuo Ohta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9473)


In auction theory, little attention has been paid to a situation where the tie-break occurs because most of auction properties are not affected by the way the tie-break is processed. Meanwhile, in secure auctions where private information should remain hidden, the information of the tie can unnecessarily reveal something that should remain hidden. Nevertheless, in most of existing secure auctions, ties are handled outside the auctions, and all the winning candidates or only the non-tied partial bidders are identified in the case of ties, assuming that a subsequent additional selection (or auction) to finalize the winners is held publicly. However, for instance, in the case of the \((M+1)\)st-price auction, the tied bidders in the \((M+1)\)st-price need to be identified for such a selection, which implies that their bids (unnecessary private information) are revealed. Hence it is desirable that secure auctions reveal neither the existence of ties nor the losing tied bidders.

To overcome these shortcomings, we propose a secure \((M+1)\)st-price auction protocol with automatic tie-breaks and no leakage of the tie information by improving the bit-slice auction circuit without increasing much overhead.


\((M+1)\)st-Price auction Multiparty computation Tie-break 



This work was partially supported by JSPS KAKENHI Grant Number 26330151, Kurata Grant from The Kurata Memorial Hitachi Science and Technology Foundation, and the Telecommunications Advancement Foundation.


  1. [AS02]
    Abe, M., Suzuki, K.: \(M\)+1-st price auction using homomorphic encryption. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 115–124. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. [BB89]
    Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant number of rounds of interaction. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 201–209 (1989)Google Scholar
  3. [BTH08]
    Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. [BGW88]
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorem for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pp. 1–10 (1988)Google Scholar
  5. [BCD+09]
    Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. [BDJ+06]
    Bogetoft, P., Damgård, I.B., Jakobsen, T., Nielsen, K., Pagter, J.I., Toft, T.: A practical implementation of secure auctions based on multiparty integer computation. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. [BF01]
    Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. J. ACM 48(4), 702–722 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Bra06]
    Brandt, F.: How to obtain full privacy in auctions. Int. J. Inf. Sec. 5(4), 201–216 (2006)CrossRefzbMATHGoogle Scholar
  9. [BS05]
    Brandt, F., Sandholm, T.W.: Efficient privacy-preserving protocols for multi-unit auctions. In: S. Patrick, A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 298–312. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. [CDI05]
    Cramer, R., Damgård, I.B., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. [DFK+06]
    Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. [DGK08]
    Damgård, I., Geisler, M., Krøigaard, M.: Homomorphic encryption and secure comparison. Int. J. Appl. Crypt. 1(1), 22–31 (2008)CrossRefMathSciNetGoogle Scholar
  13. [DI05]
    Damgård, I.B., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. [DN03]
    Damgård, I.B., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. [DPSZ12]
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. [FR96]
    Franklin, M.K., Reiter, M.K.: The design and implementation of a secure auction service. IEEE Trans. Software Eng. 22(5), 302–312 (1996)CrossRefGoogle Scholar
  17. [HKI+12]
    Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically efficient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. [HIC+14]
    Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: an efficient sorting algorithm for practical secure multi-party computation. Cryptology ePrint Archive 2014/121 (2014)Google Scholar
  19. [JJ00]
    Jakobsson, M., Juels, A.: Mix and match: secure function evaluation via ciphertexts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. [JS02]
    Juels, A., Szydlo, M.: A two-server, sealed-bid auction protocol. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 72–86. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. [Kik01]
    Kikuchi, H.: (M+1)st-price auction protocol. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 341–353. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. [KSS09]
    Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. [Kri09]
    Krishna, V.: Auction Theory, 2nd edn. Academic Press, San Diego (2009)Google Scholar
  24. [KO02]
    Kurosawa, K., Ogata, W.: Bit-slice auction circuit. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol. 2502, pp. 24–38. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. [LWZ11]
    Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipulation. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. [LAN02]
    Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold trust. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. [MR89]
    Maskin, E., Riley, J.: Optimal multi-unit auctions. In: The Economics of Missing Markets, Information, and Games, pp. 312–335. Oxford University Press (1989)Google Scholar
  28. [MMO10]
    Mitsunaga, T., Manabe, Y., Okamoto, T.: Efficient secure auction protocols based on the Boneh-Goh-Nissim encryption. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 149–163. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. [MMO11]
    Mistunaga, T., Manabe, Y., Okamoto, T.: A secure M + 1st price auction protocol based on bit slice circuits. In: Iwata, T., Nishigaki, M. (eds.) IWSEC 2011. LNCS, vol. 7038, pp. 51–64. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. [My81]
    Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  31. [NPS99]
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: ACM Conference on Electronic Commerce, pp. 129–139 (1999)Google Scholar
  32. [NO07]
    Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. [NS10]
    Nojoumian, M., Stinson, D.R.: Unconditionally secure first-price auction protocols using a multicomponent commitment scheme. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 266–280. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. [Ped91]
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  35. [Sak00]
    Sako, K.: An auction protocol which hides bids of losers. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 422–432. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  36. [SY03]
    Suzuki, K., Yokoo, M.: Secure generalized vickrey auction using homomorphic encryption. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 239–249. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  37. [Vic61]
    Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16(1), 8–37 (1961)CrossRefMathSciNetGoogle Scholar
  38. [WLG+10]
    Wang, G., Luo, T., Goodrich, M.T., Du, W., Zhu, Z.: Bureaucratic protocols for secure two-party sorting, selection, and permuting. In: ASIACCS, pp. 226–237. ACM (2010)Google Scholar
  39. [Yao82]
    Yao, A.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 160–164 (1982)Google Scholar
  40. [Zh11]
    Zhang, B.: Generic constant-round oblivious sorting algorithm for MPC. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 240–256. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Takashi Nishide
    • 1
    Email author
  • Mitsugu Iwamoto
    • 2
  • Atsushi Iwasaki
    • 2
  • Kazuo Ohta
    • 2
  1. 1.University of TsukubaTsukubaJapan
  2. 2.The University of Electro-CommunicationsChofuJapan

Personalised recommendations