Advertisement

Lightweight Protocol for Trusted Spontaneous Communication

  • Przemysław Błaśkiewicz
  • Marek Klonowski
  • Mirosław KutyłowskiEmail author
  • Piotr Syga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9473)

Abstract

We present a communication protocol with encryption, suitable for extremely weak devices, which communicate only by sending un-modulated, on/off signals (beeping). We assume severely constrained model with no coordination or synchronization between devices, and no mechanism for message reception acknowledgement. Under these assumptions, we present a way to handle the problem of transmissions interference (collisions) and providing message secrecy at the same time.

In order to achieve our goals in such a limited communication channel, we use special encoding and combine encryption procedure with the communication layer of the protocol. This is different from the state-of-the-art-today, where an encrypted channel is built in the highest level of the communication protocol after assigning the radio channel to one of the sender devices. We present a real-life motivations for the proposed approach as well as rigid correctness and security analysis.

Keywords

ad hoc network Constrained device Beeping model Mobile device Visible light communication 

References

  1. 1.
    Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal independent set. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950, pp. 32–50. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal independent set. Distrib. Comput. 26(4), 195–208 (2013)CrossRefzbMATHGoogle Scholar
  3. 3.
    Afgani, M., Haas, H., Elgala, H., Knipp, D.: Visible light communication using OFDM. In: Proceedings of 2nd International Conference on Testbeds & Research Infrastructures for the DEvelopment of NeTworks & COMmunities, TRIDENTCOM 2006, pp. 129–134. IEEE (2006)Google Scholar
  4. 4.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cai, Z., Lu, M., Wang, X.: Distributed initialization algorithms for single-hop ad hoc networks with minislotted carrier sensing. IEEE Trans. Parallel Distrib. Syst. 14(5), 516–528 (2003)CrossRefGoogle Scholar
  6. 6.
    Rivest, R.L.: Chaffing and winnowing: confidentiality without encryption, May 1998. http://people.csail.mit.edu/rivest/Chaffing.txt
  7. 7.
    Cichoń, J., Kutyłowski, M., Zawada, M.: Adaptive initialization algorithm for ad hoc radio networks with carrier sensing. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2006. LNCS, vol. 4240, pp. 35–46. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Czyzowicz, J., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Consensus and mutual exclusion in a multiple access channel. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 512–526. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Eisenman, S., Campbell, A.: E-CSMA: supporting enhanced CSMA performance in experimental sensor networks using per-neighbor transmission probability thresholds. In: Proceedings of INFOCOM 2007, pp. 1208–1216. IEEE (2007)Google Scholar
  10. 10.
    Emek, Y., Wattenhofer, R.: Stone age distributed computing. In: Proceedings of ACM PODC 2013, pp. 137–146. ACM, New York (2013)Google Scholar
  11. 11.
    Giaccone, P., Shah, D.: Message-passing for wireless scheduling: an experimental study. In: Proceedings of Computer Communications and Networks, IEEE ICCCN, pp. 1–6. IEEE (2010)Google Scholar
  12. 12.
    Jamieson, K., Hull, B., Miu, A., Balakrishnan, H.: Understanding the real-world performance of carrier sense. In: Proceedings of the 2005 ACM SIGCOMM Workshop on Experimental Approaches to Wireless Network Design and Analysis. E-WIND 2005, pp. 52–57. ACM, New York (2005)Google Scholar
  13. 13.
    Klonowski, M., Kutyłowski, M., Ren, M., Rybarczyk, K.: Forward-secure key evolution in wireless sensor networks. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 102–120. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptography, 1st edn. CRC Press Inc., Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  15. 15.
    Mitzenmacher, M.: Bloom filters. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 252–255. Springer, New York (2009)Google Scholar
  16. 16.
    Ren, M., Das, T.K., Zhou, J.: Diverging keys in wireless sensor networks. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 257–269. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Blackburn, S.R., Martin, K.M., Paterson, M.B., Stinson, D.R.: Key refreshing in wireless sensor networks. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 156–170. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Scheideler, C., Richa, A.W., Santi, P.: An \(o(\log n)\) dominating set protocol for wireless ad-hoc networks under the physical interference model. In: Jia, X., Shroff, N.B., Wan, P. (eds.) Proceedings of MobiHoc 2008, pp. 91–100. ACM Press (2008)Google Scholar
  20. 20.
    Schneider, J., Wattenhofer, R.: What is the use of collision detection (in Wireless Networks)? In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 133–147. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Tsonev, D., Videv, S., Haas, H.: Light fidelity (Li-Fi): towards all-optical networking. In: SPIE Proceedings, vol. 9007, art. ID: 900702. SPIE Digital Library, pp. 900702-900702-10 (2013)Google Scholar
  22. 22.
    Vučić, J., Kottke, C., Nerreter, S., Habel, K., Buttner, A., Langer, K.D., Walewski, J.W.: 230 mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs. In: Proceedings of Optical Fiber Communication Conference, pp. 1–3. Optical Society of America, IEEE (2010)Google Scholar
  23. 23.
    Wang, M., Zhu, H., Zhao, Y., Liu, S.: Modeling and analyzing the (mu)TESLA protocol using CSP. In: Proceedings of 5th International Symposium on Theoretical Aspects of Software Engineering, TASE 2011, pp. 247–250. IEEE Computer Society (2011)Google Scholar
  24. 24.
    Zhao, Q., Tong, L.: Opportunistic carrier sensing for energy-efficient information retrieval in sensor networks. EURASIP J. Wirel. Commun. Netw. 2005(2), 231–241 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zhu, J., Guo, X., Yang, L.L., Conner, W.S., Roy, S., Hazra, M.M.: Adapting physical carrier sensing to maximize spatial reuse in 802.11 mesh networks. Wirel. Commun. Mob. Comput. J. 4, 933–946 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Przemysław Błaśkiewicz
    • 1
  • Marek Klonowski
    • 1
  • Mirosław Kutyłowski
    • 1
    Email author
  • Piotr Syga
    • 1
  1. 1.Faculty of Fundamental Problems of Technology Department of Computer ScienceWrocław University of TechnologyWrocławPoland

Personalised recommendations