Advertisement

Functional Signatures from Indistinguishability Obfuscation

  • Li WangEmail author
  • Hongda Li
  • Fei Tang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9473)

Abstract

In PKC 2014, Boyle, Goldwasser, and Ivan introduced a cryptographic primitive called functional signatures. In a functional signature scheme, in addition to a master key that can be used to sign any message, there are signing keys for a function f, which allow one to sign any message in the range of f. In the same paper, Boyle et al. pointed out that in order to obtain a functional signature scheme with short signatures, we must either rely on non-falsifiable assumptions (as in their succinct non-interactive arguments of knowledge construction) or make use of non black-box techniques.

In this paper, we diverge from succinct non-interactive arguments of knowledge (SNARKs). We provide a construction of functional signature scheme satisfying both function privacy and succinctness under the existence of indistinguishability obfuscation for all polynomial-size circuits and one-way functions for the first time. Additionally, our scheme is under weaker assumption than SNARK-type assumptions for a class of functions and the size of signatures are independent of ff(m),  and m.

Keywords

Functional signatures Indistinguishability obfuscation Non-falsifiable assumptions 

Notes

Acknowledgements

The authors would like to thank anonymous reviewers for their helpful comments and suggestions.

References

  1. 1.
    Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  2. 2.
    Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: Indistinguishability obfuscation vs. auxiliary-input extractable functions: one must fall. Technical report, Cryptology ePrint Archive, Report 2013/641 (2013)Google Scholar
  3. 3.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 1. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  4. 4.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  6. 6.
    Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  7. 7.
    Boyle, E., Pass, R.: Limits of extractability assumptions with distributional auxiliary input. IACR Cryptology ePrint Archive, p. 703 (2013)Google Scholar
  8. 8.
    Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. Technical report, Cryptology ePrint Archive, Report 2013/642, 2013 (2013). http://eprint.iacr.org
  11. 11.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Canetti, R., Vaikuntanathan, V.: Obfuscating branching programs using black-box pseudo-free groups. IACR Cryptology ePrint Archive, p. 500 (2013)Google Scholar
  13. 13.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)Google Scholar
  15. 15.
    Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. Cryptology ePrint Archive, Report 2013/128 (2013). http://eprint.iacr.org/
  16. 16.
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  17. 17.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: FOCS, pp. 464–479 (1984)Google Scholar
  18. 18.
    Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. Cryptology ePrint Archive, Report 2014/309 (2014)Google Scholar
  19. 19.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC, pp. 99–108. ACM (2011)Google Scholar
  21. 21.
    Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain hash from indistinguishability obfuscation. Technical report, Cryptology ePrint Archive, Report 2013/509, 2013 (2013). http://eprint.iacr.org
  22. 22.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. IACRCryptology ePrint Archive, p. 379 (2013)Google Scholar
  23. 23.
    Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear encodings. Cryptology ePrint Archive, Report 2013/781 (2013). http://eprint.iacr.org/
  24. 24.
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC, pp 387–394 (1990)Google Scholar
  25. 25.
    Silvio, M.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. IACR Cryptology ePrint Archive, p. 454 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Data Assurance and Communication Security Research Center of Chinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Information SecurityInstitute of Information Engineering of Chinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations