Advertisement

How to Choose Interesting Points for Template Attacks More Effectively?

  • Guangjun FanEmail author
  • Yongbin Zhou
  • Hailong Zhang
  • Dengguo Feng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9473)

Abstract

Template attacks are widely accepted to be the most powerful side-channel attacks from an information theoretic point of view. For template attacks to be practical, one needs to choose some special samples as the interesting points in actual power traces. Up to now, many different approaches were introduced for choosing interesting points for template attacks. However, it is unknown that whether or not the previous approaches of choosing interesting points will lead to the best classification performance of template attacks. In this work, we give a negative answer to this important question by introducing a practical new approach which has completely different basic principle compared with all the previous approaches. Our new approach chooses the point whose distribution of samples approximates to a normal distribution as the interesting point. Evaluation results exhibit that template attacks based on the interesting points chosen by our new approach can achieve obvious better classification performance compared with template attacks based on the interesting points chosen by the previous approaches. Therefore, our new approach of choosing interesting points should be used in practice to better understand the practical threats of template attacks.

Keywords

Side-channel attacks Power analysis attacks Template attacks Interesting points 

Notes

Acknowledgments

This work was supported by the National Basic Research Program of China (No. 2013CB338003), the National Natural Science Foundation of China (Nos. 61472416, 61272478), and the National Key Scientific and Technological Project (No. 2014ZX01032401-001).

References

  1. 1.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Bär, M., Drexler, H., Pulkus, J.: Improved template attacks. In: COSADE2010 (2010)Google Scholar
  6. 6.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Montminy, D.P., Baldwin, R.O., Temple, M.A., Laspe, E.D.: Improving cross-device attacks using zero-mean unit-variance mormalization. J. Cryptographic Eng. 3(2), 99–110 (2013)CrossRefGoogle Scholar
  8. 8.
    Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to compare and combine power and electromagnetic information leakages. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, Berlin (2007)Google Scholar
  12. 12.
    Hanley, N., Tunstall, M., Marnane, W.P.: Unknown plaintext template attacks. In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 148–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Durvaux, F., Renauld, M., Standaert, F.-X., van Oldeneel tot Oldenzeel, L., Veyrat-Charvillon, N.: Efficient removal of random delays from embedded software implementations using hidden markov models. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 123–140. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Coron, J.-S., Kizhvatov, I.: Analysis and improvement of the random delay countermeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak information? An a priori statistical power analysis of leakage detection tests. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 486–505. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Whitnall, C., Oswald, E., Mather, L.: An exploration of the Kolmogorov-Smirnov test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    European Network of Excellence (ECRYPT). The side channel cryptanalysis lounge. http://www.crypto.ruhr-uni-bochum.de/ensclounge.html
  21. 21.
    Standaert, F.-X., Koeune, F., Schindler, W.: How to compare profiled side-channel attacks? In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 485–498. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Pearson, K.: On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag. Ser. 5 50(302), 157–175 (1900)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Guangjun Fan
    • 1
    Email author
  • Yongbin Zhou
    • 2
  • Hailong Zhang
    • 2
  • Dengguo Feng
    • 1
  1. 1.State Key Laboratory of Computer ScienceInstitute of Software, Chinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Information SecurityInstitute of Information Engineering, Chinese Academy of SciencesBeijingChina

Personalised recommendations