Skip to main content

Finite Element Analysis (FEA), Material Properties and Tissue Geometry in Ophthalmology

  • Chapter
  • First Online:
Intraocular Surgery

Abstract

Ophthalmologists deal with solid tissues such as cornea, sclera, retina, choroid, iris, crystalline lens, nerve, muscle, fat and bone and also with fluids such as aqueous humour, and blood. Solid and liquid materials have inherent physical properties related to their components like elasticity, viscosity and density. Such properties determine the materials’ interaction and behaviour. Computation of the extent of displacement, deformation and strain caused by shear, compressive, or tensile forces on materials of inherent properties and simple dimensions like squares or circles can be achieved through simple mathematical computations. The computation, however, becomes complicated when the dimensions as well as the properties of the material are more complex. Therefore for complex problems, the science of finite element analysis is used. Finite element analysis exploits material properties and dimensions to solve complex problems in the universe using mathematical approaches [1]. Finite element analysis divides complex dimensions into smaller squares, triangles or hexagons to build finite element models that could be analysed using numerical methods. Finite element analysis also allows detailed visualisation of where the structure bends or twists, and indicates the distribution of stresses and displacements. In ophthalmology, this science has helped in the provision of mathematical solutions to surgical and biological problems and to predict the optimum surgical manoeuvres to achieve certain goals [2]. In this section we will describe the basics of finite element method and its applications in ophthalmology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sundar SS, et al. Finite element analysis: a maxillofacial surgeon’s perspective. J Maxillofac Oral Surg. 2012;11(2):206–11.

    Article  Google Scholar 

  2. Dogramaci M, Williamson TH. Dynamics of epiretinal membrane removal off the retinal surface: a computer simulation project. Br J Ophthalmol. 2013;97(9):1202–7.

    Article  PubMed  Google Scholar 

  3. Power ED. A nonlinear finite element model of the human eye to investigate ocular injuries from night vision goggles. Thesis submitted to Virginia Polytechnic Institute and State University; Virginia: Blacksburg; 2001.

    Google Scholar 

  4. Schutte S, et al. A finite-element analysis model of orbital biomechanics. Vision Res. 2006;46(11):1724–31.

    Article  PubMed  Google Scholar 

  5. Cirovic S, et al. Computer modelling study of the mechanism of optic nerve injury in blunt trauma. Br J Ophthalmol. 2006;90(6):778–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rossi T, et al. Primary blast injury to the eye and orbit: finite element modeling. Invest Ophthalmol Visual Sci. 2012;53(13):8057–66.

    Article  Google Scholar 

  7. Wilde GS. Measurement of human lens stiffness for modelling presbyopia treatments. Oxford: Oxford University; 2011.

    Google Scholar 

  8. Fisher R. Elastic constants of the human lens capsule. J Physiol. 1969;201(1):1–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Halfter W, et al. Protein composition and biomechanical properties of in vivo-derived basement membranes. Cell Adh Migr. 2013;7(1):64–71.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stitzel JD, et al. Blunt trauma of the aging eye: injury mechanisms and increasing lens stiffness. Arch Ophthalmol. 2005;123(6):789–94.

    Article  PubMed  Google Scholar 

  11. Schachar RA, et al. The relationship between accommodative amplitude and the ratio of central lens thickness to its equatorial diameter in vertebrate eyes. Br J Ophthalmol. 2007;91(6):812–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schachar RA. The mechanism of accommodation and presbyopia. Int Ophthalmol Clin. 2006;46(3):39–61.

    Article  PubMed  Google Scholar 

  13. Hermans E, et al. Change in the accommodative force on the lens of the human eye with age. Vision Res. 2008;48(1):119–26.

    Article  CAS  PubMed  Google Scholar 

  14. Wu W, Peters W, Hammer ME. Basic mechanical properties of retina in simple elongation. J Biomech Eng. 1987;109(1):65–7.

    Article  CAS  PubMed  Google Scholar 

  15. Zysset PK, et al. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech. 1999;32(10):1005–12.

    Article  CAS  PubMed  Google Scholar 

  16. Truesdell C. Rational mechanics. New York: Academic Press; 1983.

    Google Scholar 

  17. Huston RL. Principles of biomechanics. Washington, DC: CRC Press; 2009.

    Google Scholar 

  18. Flinn RA, Trojan PK. Engineering materials and their applications. Engineering materials and their applications, 4th ed, by Richard A. Flinn, Paul K. Trojan, pp. 1056. ISBN 0-471-12508-3. Wiley-VCH, December 1994. 1.

    Google Scholar 

  19. Nave,C. Hyperphysics–bulk elastic properties. 2014, Georgia State University, Department of Physics and Astronomy. Available from internet: http://hyperphysicsphyastr.gsu.edu/hbase/permot3.html.

  20. Gercek H. Poisson’s ratio values for rocks. Int J Rock Mech Min Sci. 2007;44(1):1–13.

    Article  Google Scholar 

  21. Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005;46(11):4189.

    Article  PubMed  Google Scholar 

  22. Foos RY. Vitreoretinal juncture; topographical variations. Invest Ophthalmol. 1972;11(10):801–8.

    CAS  PubMed  Google Scholar 

  23. Bhavikatti S. Finite element analysis. New Delhi: New Age International; 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Williamson, T.H. (2016). Finite Element Analysis (FEA), Material Properties and Tissue Geometry in Ophthalmology. In: Intraocular Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-27990-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27990-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27988-6

  • Online ISBN: 978-3-319-27990-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics