Skip to main content

The Invariant Subspace Problem

Lomonosov’s Famous Theorem

  • Chapter
  • First Online:
A Fixed-Point Farrago

Part of the book series: Universitext ((UTX))

  • 2315 Accesses

Overview

This chapter is about the most vexing problem in the theory of linear operators on Hilbert space:

The invariant subspace problem. Does every operator on Hilbert space have a nontrivial invariant subspace?

Here “operator” means “continuous linear transformation,” and “invariant subspace” means “closed (linear) subspace that the operator takes into itself.” To say that a subspace is “nontrivial” means that it is neither the zero subspace nor the whole space. Examples constructed toward the end of the last century show that in the generality of Banach spaces there do exist operators with only trivial invariant subspaces. For Hilbert space, however, the Invariant Subspace Problem remains open, and is the subject of much research. In this chapter we’ll see why invariant subspaces are of interest and then will prove one of the subject’s landmark theorems: Victor Lomonosov’s 1973 result, a special case of which states:

If an operator T on a Banach space commutes with a non-zero compact operator, then T has a nontrivial invariant subspace.

This result, which far surpassed anything that seemed attainable at the time, is only part of what Lomonosov proved in an astonishing two-page paper [71] that introduced nonlinear methods—in particular the Schauder Fixed-Point Theorem—into this supposedly hard-core-linear area of mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If X were a normed linear space with P continuous we could use the language introduced in Sect. 4.1 and call P a retraction of X onto V.

References

  1. Argyros, S.A., Haydon, R.G.: A hereditarily indecomposable \(\mathcal{L}_{\infty }\)-space that solves the scalar-plus-compact problem. Acta Math. 206, 1–54 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronszajn, N., Smith, K.T.: Invariant subspaces of completely continuous operators. Ann. of Math (2), 60, 345–350 (1954)

    Google Scholar 

  3. Bernstein, A.R., Robinson, A.: Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos. Pacific J. Math. 16, 421–431 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chalendar, I., Partington, J.R.: Modern Approaches to the Invariant-Subspace Problem. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  5. Enflo, P.: On the invariant subspace problem for Banach spaces. Acta Math. 158, 213–313 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hadwin, D.W., Nordgren, E.A., Radjavi, H., Rosenthal, P.: An operator not satisfying Lomonosov’s hypotheses. J. Funct. Anal. 38, 410–415 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Horn, R.A., Johnson, C.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  8. Lomonosov, V.I.: Invariant subspaces for the family of operators which commute with a completely continuous operator. Funct. Anal. Appl. 7, 213–214 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pearcy, C., Shields, A.L.: A survey of the Lomonosov technique. Topics in Operator Theory, Mathematical Surveys, vol. 13, pp. 221–229. American Mathematical Society, Providence (1974)

    Google Scholar 

  10. Radjavi, H., Rosenthal, P.: Invariant Subspaces, 2nd edn. Dover, New York (2003). First edition published by Springer, New York (1973)

    Google Scholar 

  11. Read, C.J.: A short proof concerning the invariant subspace problem. J. Lond. Math. Soc. (2) 34, 335–348 (1986)

    Google Scholar 

  12. Read, C.J.: The invariant subspace problem for a class of Banach spaces 2: hypercyclic operators. Isreal J. Math. 63, 1–40 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Riesz, F., Nagy, B.S.: Functional Analysis, 2nd edn. Frederick Ungar, New York (1955). Reprinted by Dover Publications, New York (1990)

    Google Scholar 

  14. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  15. Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  16. Schur, I.: Über die charakteristischen Wurzeln einerlinearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen. Math. Ann. 66, 488–510 (1909)

    Article  MathSciNet  MATH  Google Scholar 

  17. Troitsky, V.G.: Lomonosov’s theorem cannot be extended to chains of four operators. Proc. Amer. Math. Soc. 128, 521–525 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Williamson, J.H.: Compact linear operators in linear topological spaces. J. Lond. Math. Soc. (2) 29, 149–156 (1954)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shapiro, J.H. (2016). The Invariant Subspace Problem. In: A Fixed-Point Farrago. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-27978-7_8

Download citation

Publish with us

Policies and ethics