Skip to main content

Food-Based Approaches for Achieving Nutritional Adequacy with the Mediterranean, DASH, and USDA Food Patterns

  • Chapter
  • First Online:
Book cover Mediterranean Diet

Abstract

It is evident that recommended dietary practices are integral for health and well-being. Several dietary patterns have been identified that promote health, including the DASH dietary pattern (DASH), the USDA food pattern (USDAFP) and the Mediterranean dietary pattern (MDP). The existing evidence base is most robust for the health benefits of MDP. The average American diet, as well as the typical western diet both fall short of meeting current nutrient and food-based recommendations. There have been countless calls for action to improve the American diet, and there is strong advocacy for implementing the MDP worldwide, including in the United States. Strategies for implementing the MDP in the US include shifting the fatty acid profile from saturated to unsaturated fatty acids, including portion-controlled lean protein foods such as fish and nuts, and increasing fruit and vegetable consumption. The current chapter discusses specific nutrient and food-based shortfalls in the current American diet and summarizes the nutritional benefits of DASH, USDAFP and MDP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keys A. Coronary heart disease in seven countries. Circulation. 1970;41(1):186–95.

    Google Scholar 

  2. Simopoulos AP. The Mediterranean diets: what is so special about the diet of Greece? The scientific evidence. J Nutr. 2001;131(11):3065S–73.

    CAS  PubMed  Google Scholar 

  3. Simopoulos AP, Salem Jr N. n-3 Fatty acids in eggs from range-fed Greek chickens. N Engl J Med. 1989;321:1412–5.

    Article  CAS  PubMed  Google Scholar 

  4. Nestle M. Mediterranean diets: historical and research overview. Am J Clin Nutr. 1995;61(6):1313S–20.

    CAS  PubMed  Google Scholar 

  5. Brunelle T, Dumas P, Souty F. The impact of globalization on food and agriculture: the case of the diet convergence. J Environ Dev. 2014;23(1):41–65.

    Article  Google Scholar 

  6. Alberti-Fidanza A, Fidanza F. Mediterranean adequacy index of Italian diets. Public Health Nutr. 2004;7(07):937–41.

    Article  PubMed  Google Scholar 

  7. Leonhäuser IU, Dorandt S, Willmund E, Honsel J. The benefit of the Mediterranean diet. Eur J Nutr. 2004;43(1):31–8.

    Google Scholar 

  8. Castro-Quezada I, Román-Viñas B, Serra-Majem L. The Mediterranean diet and nutritional adequacy: a review. Nutrients. 2014;6(1):231–48.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Serra-Majem L, Bes-Rastrollo M, Román-Vinas B, Pfrimer K, Sánchez-Villegas A, Martínez-González MA. Dietary patterns and nutritional adequacy in a Mediterranean country. Br J Nutr. 2009;101(S2):S21–8.

    Article  CAS  PubMed  Google Scholar 

  10. Kant AK. Dietary patterns and health outcomes. J Am Diet Assoc. 2004;104(4):615–35.

    Article  PubMed  Google Scholar 

  11. Roman-Vinas B, Ribas Barba L, Ngo J, Gurinovic M, Novakovic R, Cavelaars A, et al. Projected prevalence of inadequate nutrient intakes in Europe. Ann Nutr Metab. 2011;59(2-4):84–95.

    Article  CAS  PubMed  Google Scholar 

  12. Dietary Guidelines for Americans. US Department of Agriculture and US Department of Health and Human Services. Dietary Guidelines for Americans. 7th ed. Washington, DC: US Government Printing Office; 2010. December 2010. [Internet, cited 2015 Jan]. Available from: http://www.cnpp.usda.gov/sites/default/files/dietary_guidelines_for_americans/PolicyDoc.pdf.

    Google Scholar 

  13. Richter CK, Skulas-Ray AC, Kris-Etherton PM. Recent findings of studies on the Mediterranean diet: what are the implications for current dietary recommendations? Endocrinol Metab Clin North Am. 2014;43(4):963–80.

    Article  PubMed  Google Scholar 

  14. Reedy J, Krebs-Smith SM, Miller PE, Liese AD, Kahle LL, Park Y, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr. 2014;144(6):881–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Djousse L, Petrone A, Gaziano JM. Alternate healthy eating index, Mediterranean and DASH dietary patterns and risk of death in the Physician’s Health Study. Cardiology. 2014;128:426. Allschwilerstrasse 10, ch-4009 Basel, Switzerland: Karger.

    Google Scholar 

  16. Dixon LB, Subar AF, Peters U, Weissfeld JL, Bresalier RS, Risch A, et al. Adherence to the USDA Food Guide, DASH Eating Plan, and Mediterranean Dietary Pattern Reduces Risk of Colorectal Adenoma. J Nutr. 2007;137(11):2443–50.

    CAS  PubMed  Google Scholar 

  17. Tangney CC, Kwasny MJ, Li H, Wilson RS, Evans DA, Morris MC. Adherence to a Mediterranean-type dietary pattern and cognitive decline in a community population. Am J Clin Nutr. 2011;93(3):601–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Lourida I, Soni M, Thompson-Coon J, Purandare N, Lang IA, Ukoumunne OC, et al. Mediterranean diet, cognitive function, and dementia: a systematic review. Epidemiology. 2013;24(4):479–89.

    Article  PubMed  Google Scholar 

  19. Tangney CC. DASH and Mediterranean-type dietary patterns to maintain cognitive health. Curr Nutr Rep. 2014;3(1):51–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. García-Fernández E, Rico-Cabanas L, Rosgaard N, Estruch R, Bach-Faig A. Mediterranean diet and cardiodiabesity: a review. Nutrients. 2014;6(9):3474–500.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Frazao E. High costs of poor eating patterns in the United States. In: Frazao E, editor. America’s eating habits: changes and consequences. Washington, DC: US Department of Agriculture; 1998. p. 5–32.

    Google Scholar 

  22. Cawley J, Meyerhoefer C, Biener A, Hammer M, Wintfeld N. Savings in Medical Expenditures Associated with Reductions in Body Mass Index Among US Adults with Obesity, by Diabetes Status. Pharmacoeconomics. 2015;33(7):707–22.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Flock MR, Kris-Etherton PM. Dietary guidelines for Americans 2010: implications for cardiovascular disease. Curr Atheroscler Rep. 2011;13(6):499–507.

    Article  CAS  PubMed  Google Scholar 

  24. Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr. 1995;61(6):1402S–6.

    CAS  PubMed  Google Scholar 

  25. CDC’s Second nutrition report: a comprehensive biochemical assessment of the nutrition status of the US population. 2012. [Internet, cited 2015 Jan 11]. Available from: http://www.cdc.gov/nutritionreport/

  26. Rosanoff A, Weaver CM, Rude RK. Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr Rev. 2012;70(3):153–64.

    Article  PubMed  Google Scholar 

  27. King DE, Mainous III AG, Geesey ME, Woolson RF. Dietary magnesium and C-reactive protein levels. J Am Coll Nutr. 2005;24(3):166–71.

    Article  CAS  PubMed  Google Scholar 

  28. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342(12):836–43.

    Article  CAS  PubMed  Google Scholar 

  29. Zivkovic AM, Telis N, German JB, Hammock BD. Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health. Calif Agric (Berkeley). 2011;65(3):106.

    Article  Google Scholar 

  30. Yates CM, Calder PC, Rainger G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Therapeut. 2014;141(3):272–82.

    Article  CAS  Google Scholar 

  31. Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr. 2012;3(1):1–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Vannice G, Rasmussen H. Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults. J Acad Nutr Diet. 2014;114(1):136–53.

    Google Scholar 

  33. Flock MR, Harris WS, Kris‐Etherton PM. Long‐chain Omega‐3 fatty acids: time to establish a dietary reference intake. Nutr Rev. 2013;71(10):692–707.

    Article  PubMed  Google Scholar 

  34. Kris-Etherton PM, Grieger JA, Etherton TD. Dietary reference intakes for DHA and EPA. Prostaglandins Leukot Essent Fatty Acids. 2009;81(2):99–104.

    Article  CAS  PubMed  Google Scholar 

  35. What We Eat in America, NHANES 2011–2012 [Internet, cited 2015 Jan 18]. Available from: http://www.ars.usda.gov/SP2UserFiles/Place/80400530/pdf/1112/Table_1_NIN_GEN_11.pdf

  36. Antman EM, Appel LJ, Balentine D, Johnson RK, Steffen LM, Miller EA, et al. Stakeholder discussion to reduce population-wide sodium intake and decrease sodium in the food supply a conference report from the American Heart Association Sodium Conference 2013 Planning Group*. Circulation. 2014;129(25):e660–79. doi:10.1161/CIR.0000000000000051.

    Article  PubMed  Google Scholar 

  37. Institute of Medicine (IOM). Dietary reference intakes (DRIs): recommended dietary allowances and adequate intakes, vitamins. Food and Nutrition Board, Institute of Medicine, National Academies. [Internet, cited 2015 Jan 12]. Available from: http://www.iom.edu/~/media/Files/Activity%20Files/Nutrition/DRIs/New%20Material/2_%20RDA%20and%20AI%20Values_Vitamin%20and%20Elements.pdf

  38. Institute of Medicine of the National Academies. Dietary Reference Intakes for Calcium and Vitamin D. Report Brief 2010. http://iom.nationalacademies.org/~/media/Files/Report%20Files/2010/Dietary-Reference-Intakes-for-Calcium-and-Vitamin-D/Vitamin%20D%20and%20Calcium%202010%20Report%20Brief.pdf

  39. Anderson CA, Appel LJ, Okuda N, Brown IJ, Chan Q, Zhao L, et al. Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J Am Diet Assoc. 2010;110(5):736–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Urban LE, Roberts SB, Fierstein JL, Gary CE, Lichtenstein AH. Sodium, saturated fat, and trans fat content per 1,000 kilocalories: temporal trends in fast-food restaurants, United States, 2000–2013. Prev Chronic Dis. 2014;11:140335. [Internet, cited 2015 Jan 20]. doi:http://dx.doi.org/10.5888/pcd11.140335.

    Article  Google Scholar 

  41. Astrup A, Dyerberg J, Elwood P, Hermansen K, Hu FB, Jakobsen MU, et al. The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: where does the evidence stand in 2010? Am J Clin Nutr. 2011;93(4):684–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Gillingham LG, Harris-Janz S, Jones PJ. Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids. 2011;46(3):209–28.

    Article  CAS  PubMed  Google Scholar 

  43. Reedy J, Krebs-Smith SM. Dietary sources of energy, solid fats, and added sugars among children and adolescents in the United States. J Am Diet Assoc. 2010;110(10):1477–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Slining MM, Popkin BM. Trends in intakes and sources of solid fats and added sugars among US children and adolescents: 1994–2010. Pediatr Obes. 2013;8(4):307–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Slavin J. Whole grains and human health. Nutr Res Rev. 2004;17(01):99–110.

    Article  PubMed  Google Scholar 

  46. Williams PG. Evaluation of the evidence between consumption of refined grains and health outcomes. Nutr Rev. 2012;70(2):80–99.

    Article  PubMed  Google Scholar 

  47. Giacco R, Costabile G, Della Pepa G, Anniballi G, Griffo E, Mangione A, et al. A whole-grain cereal-based diet lowers postprandial plasma insulin and triglyceride levels in individuals with metabolic syndrome. Nutr Metab Cardiovas Dis. 2014;24(8):837–44.

    Article  CAS  Google Scholar 

  48. Newby PK, Maras J, Bakun P, Muller D, Ferrucci L, Tucker KL. Intake of whole grains, refined grains, and cereal fiber measured with 7-D diet records and associations with risk factors for chronic disease. Am J Clin Nutr. 2007;86(6):1745–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Pereira MA, Jacobs DR, Pins JJ, Raatz SK, Gross MD, Slavin JL, et al. Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. Am J Clin Nutr. 2002;75(5):848–55.

    CAS  PubMed  Google Scholar 

  50. Biesalski HK. Diabetes preventive components in the Mediterranean diet. Eur J Nutr. 2004;43:i26–30.

    Article  CAS  Google Scholar 

  51. USDA. Grain consumption by Americans Nutrition Insight 32. United States Department of Agriculture Center for Nutrition Policy and Promotion. [Internet, cited 2015 Jan 20]. 2005. Available from: http://www.cnpp.usda.gov/sites/default/files/nutrition_insights_uploads/Insight32.pdf

  52. American Heart Association (AHA) [Internet, cited 2015 Jan 20]. Available from: http://www.heart.org/HEARTORG/Conditions/Cholesterol/PreventionTreatmentofHighCholesterol/Know-Your-Fats_UCM_305628_Article.jsp

  53. Dhaka V, Gulia N, Ahlawat KS, Khatkar BS. Trans fats—sources, health risks and alternative approach-a review. J Food Sci Technol. 2011;8(5):534–41.

    Article  CAS  Google Scholar 

  54. Remig V, Franklin B, Margolis S, Kostas G, Nece T, Street JC. Trans fats in America: a review of their use, consumption, health implications, and regulation. J Am Diet Assoc. 2010;110(4):585–92.

    Article  CAS  PubMed  Google Scholar 

  55. Doell D, Folmer D, Lee H, Honigfort M, Carberry S. Updated estimate of trans fat intake by the US population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012;29(6):861–74.

    Article  CAS  PubMed  Google Scholar 

  56. Ascherio A, Hennekens CH, Buring JE, Master C, Stampfer MJ, Willett WC. Trans-fatty acids intake and risk of myocardial infarction. Circulation. 1994;89:94–101.

    Article  CAS  PubMed  Google Scholar 

  57. CDC.GOV [Internet]. Trans fats: the Facts [cited 2015 Jan 20]. Available from: http://www.cdc.gov/nutrition/everyone/basics/fat/transfat.html

  58. di Castelnuovo A, Costanzo S, Bagnardi V, Donati MB, Iacoviello L, de Gaetano G. Alcohol dosing and total mortality in men and women: an updated meta-analysis of 34 prospective studies. Arch Intern Med. 2006;166(22):2437–45.

    Article  PubMed  Google Scholar 

  59. De Oliveira E Silva ER, Foster D, McGee Harper M, Seidman CE, Smith JD, Breslow JL, Brinton EA. Alcohol consumption raises HDL cholesterol levels by increasing the transport rate of apolipoproteins A-I and A-II. Circulation. 2000;102:2347–52.

    Article  CAS  PubMed  Google Scholar 

  60. Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ. Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ. 1999;319(7224):1523–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Albert MA, Glynn RJ, Ridker PM. Alcohol consumption and plasma concentration of C-reactive protein. Circulation. 2003;107(3):443–7.

    Article  PubMed  Google Scholar 

  62. Roerecke M, Rehm J. Irregular heavy drinking occasions and risk of ischemic heart disease: a systematic review and meta-analysis. Am J Epidemiol. 2010;171(6):633–44.

    Article  PubMed  Google Scholar 

  63. Boffetta P, Hashibe M. Alcohol and cancer. Lancet Oncol. 2006;7(2):149–56.

    Article  CAS  PubMed  Google Scholar 

  64. Hansel B, Thomas F, Pannier B, Bean K, Kontush A, Chapman MJ, et al. Relationship between alcohol intake, health and social status and cardiovascular risk factors in the urban Paris-Ile-De-France Cohort: is the cardioprotective action of alcohol a myth? Eur J Clin Nutr. 2010;64(6):561–8.

    Article  CAS  PubMed  Google Scholar 

  65. Corrao G, Rubbiati L, Bagnardi V, Zambon A, Poikolainen K. Alcohol and coronary heart disease: a meta‐analysis. Addiction. 2000;95(10):1505–23.

    Article  CAS  PubMed  Google Scholar 

  66. Mukamal KJ, Conigrave KM, Mittleman MA, Camargo Jr CA, Stampfer MJ, Willett WC, et al. Roles of drinking pattern and type of alcohol consumed in coronary heart disease in men. N Engl J Med. 2003;348(2):109–18.

    Article  PubMed  Google Scholar 

  67. Chiva-Blanch G, Urpi-Sarda M, Ros E, Valderas-Martinez P, Casas R, Arranz S, et al. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: a randomized clinical trial. Clin Nutr. 2013;32(2):200–6.

    Article  CAS  PubMed  Google Scholar 

  68. del Valle HB, Yaktine AL, Taylor CL, Ross AC, editors. Dietary reference intakes for calcium and vitamin D. Washington, DC: National Academies Press; 2011.

    Google Scholar 

  69. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. Bone mineral density in girls with forearm fractures. J Bone Miner Res. 1998;13:143–8.

    Article  CAS  PubMed  Google Scholar 

  70. Loro ML, Sayre J, Roe TF, Goran MI, Kaufman FR, Gilsanz V. Early identification of children predisposed to low peak bone mass and osteoporosis later in life 1. J Clin Endocrin Metab. 2000;85(10):3908–18.

    CAS  Google Scholar 

  71. Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999;69(4):727–36.

    CAS  PubMed  Google Scholar 

  72. Kontogianni MD, Melistas L, Yannakoulia M, Malagaris I, Panagiotakos DB, Yiannakouris N. Association between dietary patterns and indices of bone mass in a sample of Mediterranean women. Nutrition. 2009;25(2):165–71.

    Article  PubMed  Google Scholar 

  73. New SA. Intake of fruit and vegetables: implications for bone health. Proc Nutr Soc. 2003;62(04):889–99.

    PubMed  Google Scholar 

  74. Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc. 1995;95(7):791–7.

    Article  CAS  PubMed  Google Scholar 

  75. Barzel US, Massey LK. Excess dietary protein can adversely affect bone. J Nutr. 1998;128(6):1051–3.

    CAS  PubMed  Google Scholar 

  76. Fenton TR, Lyon AW, Eliasziw M, Tough SC, Hanley DA. Meta‐analysis of the effect of the acid‐Ash hypothesis of osteoporosis on calcium balance. J Bone Miner Res. 2009;24(11):1835–40.

    Google Scholar 

  77. Barzel US, Jowsey J. The effects of chronic acid and alkali administration on bone turnover in adult rats. Clin Sci. 1969;36:517–24.

    CAS  PubMed  Google Scholar 

  78. Simon JA, Hudes ES. Relation of ascorbic acid to bone mineral density and self-reported fractures among US adults. Am J Epidemiol. 2001;154(5):427–33.

    Article  CAS  PubMed  Google Scholar 

  79. Jie KS, Bots ML, Vermeer C, Witteman JCM, Grobbee DE. Vitamin K status and bone mass in women with and without aortic atherosclerosis: a population-based study. Calcif Tissue Int. 1996;59(5):352–6.

    Article  CAS  PubMed  Google Scholar 

  80. Watkins BA, Li Y, Lippman HE, Seifert MF. Omega-3 polyunsaturated fatty acids and skeletal health. Exp Biol Med (Maywood). 2001;226(6):485–97.

    CAS  Google Scholar 

  81. Fulgoni III VL, Keast DR, Auestad N, Quann EE. Nutrients from dairy foods are difficult to replace in diets of Americans: food pattern modeling and an analyses of the National Health and Nutrition Examination Survey 2003-2006. Nutr Res. 2011;31(10):759–65.

    Article  CAS  PubMed  Google Scholar 

  82. Hiza HAB, Bente L. Nutrient content of the US Food Supply, 1909–2004: a summary report. USDA, Washington, DC. 2007. [Internet, cited 2015 Jan 5]. Available from: http://www.cnpp.usda.gov/sites/default/files/nutrient_content_of_the_us_food_supply/FoodSupply1909-2000.pdf

  83. Lin PH, Ginty F, Appel LJ, Aickin M, Bohannon A, Garnero P, et al. The DASH Diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults. J Nutr. 2003;133(10):3130–6.

    CAS  PubMed  Google Scholar 

  84. Nicklas TA, O’Neil CE, Fulgoni III VL. The role of dairy in meeting the recommendations for shortfall nutrients in the American diet. J Am Coll Nutr. 2009;28(supp1):73S–81.

    Article  CAS  PubMed  Google Scholar 

  85. Ma J, Johns RA, Stafford RS. Americans are not meeting current calcium recommendations. Am J Clin Nutr. 2007;85(5):1361–6.

    CAS  PubMed  Google Scholar 

  86. Bailey RL, Dodd KW, Goldman JA, Gahche JJ, Dwyer JT, Moshfegh AJ, et al. Estimation of total usual calcium and Vitamin D intakes in the United States. J Nutr. 2010;140(4):817–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Simopoulos AP. The Mediterranean food guide: Greek column rather than an Egyptian pyramid. Nutr Today. 1995;30(2):54–61.

    Article  Google Scholar 

  88. Kafatos A, Verhagen H, Moschandreas J, Apostolaki I, Westerop JJV. Mediterranean diet of Crete: foods and nutrient content. J Am Diet Assoc. 2000;100(12):1487–93.

    Article  CAS  PubMed  Google Scholar 

  89. Lin PH, Aickin M, Champagne C, Craddick S, Sacks FM, McCarron P, et al. Food group sources of nutrients in the dietary patterns of the DASH-sodium trial. J Am Diet Assoc. 2003;103(4):488–96.

    PubMed  Google Scholar 

  90. Dietary Guidelines for Americans. US Department of Health and Human Services, US Department of Agriculture. 2005 [Internet, cited 2015 Jan 5]. Available from: http://www.health.gov/dietaryguidelines/dga2005/document/html/chapter2.htm

  91. Chiuve SE, Korngold EC, Januzzi JL, Gantzer ML, Albert CM. Plasma and dietary magnesium and risk of sudden cardiac death in women. Am J Clin Nutr. 2011;93(2):253–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Del Gobbo LC, Imamura F, Wu JH, de Oliveira Otto MC, Chiuve SE, Mozaffarian D. Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2013;98(1):160–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Larsson SC, Orsini N, Wolk A. Dietary magnesium intake and risk of stroke: a meta-analysis of prospective studies. Am J Clin Nutr. 2012;95(2):362–6.

    Article  CAS  PubMed  Google Scholar 

  94. Hata A, Ninomiya T, Mukai N, Hirakawa Y, Hata J, Ozawa M, et al. Magnesium intake decreases type 2 diabetes risk through the improvement of insulin resistance and inflammation: the Hisayama Study. Diabet Med. 2013;30(12):1487–94.

    Article  CAS  PubMed  Google Scholar 

  95. Reis MA, Reyes FG, Saad MJ, Velloso LA. Magnesium deficiency modulates the insulin signaling pathway in liver but not muscle of rats. J Nutr. 2000;130(2):133–8.

    CAS  PubMed  Google Scholar 

  96. Weglicki WB, Phillips TM, Freedman AM, Cassidy MM, Dickens BF. Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin. Mol Cell Biochem. 1992;110(2):169–73.

    Article  CAS  PubMed  Google Scholar 

  97. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academy of Sciences. Institute of Medicine. Food and Nutrition Board. 1997. [Internet, cited 2015 Jan 5]. Available from: http://www.nal.usda.gov/fnic/DRI//DRI_Calcium/190-249.pdf

  98. Moshfegh A, Goldman JD, Ahuja J, Rhodes D, LaComb R. (2009) What we eat in America, NHANES 2005-6: usual nutrient intakes from food and water compared to 1997 dietary reference intakes for vitamin D, calcium, phosphorus, and magnesium. U.S. Department of Agriculture, Agricultural Research Service pp. 1–24.

    Google Scholar 

  99. Calton JB. Prevalence of micronutrient deficiency in popular diet plans. J Int Soc Sports Nutr. 2010;7:24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Marier JR. Magnesium content of the food supply in the modern-day world. Magnesium. 1985;5(1):1–8.

    Google Scholar 

  101. Yang Q, Liu T, Kuklina EV, Flanders WD, Hong Y, Gillespie C, et al. Sodium and potassium intake and mortality among US adults: prospective data from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2011;171(13):1183–91.

    Article  PubMed  Google Scholar 

  102. Fels J, Oberleithner H, Kusche-Vihrog K. Ménage à Trois: aldosterone, sodium and nitric oxide in vascular endothelium. Biochim Biophys Acta. 2010;1802(12):1193–202.

    Google Scholar 

  103. Büssemaker E, Hillebrand U, Hausberg M, Pavenstädt H, Oberleithner H. Pathogenesis of hypertension: interactions among sodium, potassium, and aldosterone. Am J Kidney Dis. 2010;55(6):1111–20.

    Article  PubMed  CAS  Google Scholar 

  104. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, et al. Duodenal calcium absorption in vitamin d receptor–knockout mice: functional and molecular aspects. Proc Natl Acad Sci U S A. 2001;98(23):13324–9.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Thacher TD, Clarke BL. Vitamin D insufficiency. Mayo Clin Proc. 2011;86(1):50–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Rosen CJ, Adams JS, Bikle DD, Black DM, Demay MB, Manson JE, et al. The nonskeletal effects of vitamin D: an endocrine society scientific statement. Endocr Rev. 2012;33(3):456–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Mitri J, Muraru MD, Pittas AG. Vitamin D and type 2 diabetes: a systematic review. Eur J Clin Nutr. 2011;65(9):1005–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Looker AC, Johnson CL, Lacher DA, Pfeiffer CM, Schleicher RL, Sempos CT. Vitamin D status: United States, 2001–2006. NCHS Data Brief No. 59 March 2011 US Department Of Health and Human Services, Centers for Disease Control and Prevention National Center for Health Statistics. 2011. [Internet, cited 2015 Jan 22]. Available from: http://www.cdc.gov/nchs/data/databriefs/db59.pdf

  109. Webb AR. Who, what, where and when—influences on cutaneous vitamin D synthesis. Prog Biophys Mol Biol. 2006;92(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  110. Lim HW, Gilchrest BA, Cooper KD, Bischoff-Ferrari HA, Rigel DS, Cyr WH, et al. Sunlight, tanning booths, and vitamin D. J Am Acad Dermatol. 2005;52(5):868–76.

    Article  PubMed  Google Scholar 

  111. Godar DE, Pope SJ, Grant WB, Holick MF. Solar UV doses of adult Americans and vitamin D3 production. Dermatoendocrinol. 2011;3(4):243.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Taylor CL, Patterson KY, Roseland JM, Wise SA, Merkel JM, Pehrsson PR, et al. Including food 25-hydroxyvitamin D in intake estimates may reduce the discrepancy between dietary and serum measures of vitamin D status. J Nutr. 2014;144(5):654–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5(4):1417–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Meyer KA, Kushi LH, Jacobs DR, Slavin J, Sellers TA, Folsom AR. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr. 2000;71(4):921–30.

    CAS  PubMed  Google Scholar 

  115. Salas-Salvadó J, Martinez-Gonzalez MA, Bullo M, Ros E. The role of diet in the prevention of type 2 diabetes. Nutr Metab Cardiovasc. 2011;21:B32–48.

    Article  CAS  Google Scholar 

  116. Dikeman CL, Fahey Jr GC. Viscosity as related to dietary fiber: a review. Crit Rev Food Sci. 2006;46(8):649–63.

    Article  CAS  Google Scholar 

  117. Jenkins DJ, Kendall CW, Axelsen M, Augustin LS, Vuksan V. Viscous and nonviscous fibres, nonabsorbable and low glycaemic index carbohydrates, blood lipids and coronary heart disease. Curr Opin Lipidol. 2000;11(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  118. Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol. 2011;45:S120–7.

    Article  CAS  PubMed  Google Scholar 

  119. Park Y, Subar AF, Hollenbeck A, Schatzkin A. Dietary fiber intake and mortality in the NIH-AARP Diet and Health Study. Arch Intern Med. 2011;171(12):1061–8.

    Article  PubMed Central  PubMed  Google Scholar 

  120. Schröder H. Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. J Nutr Biochem. 2007;18(3):149–60.

    Article  PubMed  CAS  Google Scholar 

  121. Anderson JW, Baird P, Davis Jr RH, Ferreri S, Knudtson M, Koraym A, et al. Health benefits of dietary fiber. Nutr Rev. 2009;67(4):188–205.

    Article  PubMed  Google Scholar 

  122. Clemens R, Kranz S, Mobley AR, Nicklas TA, Raimondi MP, Rodriguez JC, et al. Filling America’s fiber intake gap: summary of a roundtable to probe realistic solutions with a focus on grain-based foods. J Nutr. 2012;142(7):1390S–401.

    Article  CAS  PubMed  Google Scholar 

  123. Riccardi G, Clemente G, Giacco R. Glycemic index of local foods and diets: the Mediterranean experience. Nutr Rev. 2003;61(s5):S56–60.

    PubMed  Google Scholar 

  124. Pitsavos C, Panagiotakos DB, Tzima N, Chrysohoou C, Economou M, Zampelas A, et al. Adherence to the Mediterranean diet is associated with total antioxidant capacity in healthy adults: the ATTICA study. Am J Clin Nutr. 2005;82(3):694–9.

    CAS  PubMed  Google Scholar 

  125. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, et al. Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr. 2012;51(6):637–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Macready AL, George TW, Chong MF, Alimbetov DS, Jin Y, Vidal A, et al. Flavonoid-rich fruit and vegetables improve microvascular reactivity and inflammatory status in men at risk of cardiovascular disease—FLAVURS: a randomized controlled trial. Am J Clin Nutr. 2014;99(3):479–89. Erratum in: doi: 10.3945/ajcn.114.091884. Am J Clin Nutr. 100(2),733.

    Article  CAS  PubMed  Google Scholar 

  127. Kelley DS, Rasooly R, Jacob RA, Kader AA, Mackey BE. Consumption of Bing sweet cherries lowers circulating concentrations of inflammation markers in healthy men and women. J Nutr. 2006;136(4):981–6.

    CAS  PubMed  Google Scholar 

  128. Watzel B, Kulling SE, Moseneder J. A 4-week intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, non-smoking men. Am J Clin Nutr. 2005;82:1052–8.

    Google Scholar 

  129. Sala-Vila A, Harris WS, Cofán M, Pérez-Heras AM, Pintó X, Lamuela-Raventós RM, et al. Determinants of the Omega-3 index in a Mediterranean population at increased risk for CHD. Br J Nutr. 2011;106(03):425–31.

    Article  CAS  PubMed  Google Scholar 

  130. Maillot M, Issa C, Vieux F, Lairon D, Darmon N. The shortest way to reach nutritional goals is to adopt Mediterranean food choices: evidence from computer-generated personalized diets. Am J Clin Nutr. 2011. doi:10.3945/ajcn.111.016501.

    PubMed  Google Scholar 

  131. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.

    Google Scholar 

  132. Salas-Salvadó J, Garcia-Arellano A, Estruch R, Marquez-Sandoval F, Corella D, Fiol M, et al. Components of the Mediterranean-type food pattern and serum inflammatory markers among patients at high risk for cardiovascular disease. Eur J Clin Nutr. 2007;62(5):651–9.

    Article  PubMed  CAS  Google Scholar 

  133. Koloverou E, Esposito K, Giugliano D, Panagiotakos D. The effect of Mediterranean diet on the development of type 2 diabetes mellitus: a meta-analysis of 10 prospective studies and 136,846 participants. Metabolism. 2014;63(7):903–11.

    Article  CAS  PubMed  Google Scholar 

  134. Salas-Salvadó J, Bulló M, Babio N, Martínez-González MÁ, Ibarrola-Jurado N, Basora J, et al. Reduction in the incidence of Type 2 diabetes with the Mediterranean diet results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care. 2011;34(1):14–9.

    Article  PubMed Central  PubMed  Google Scholar 

  135. Martínez-González MA, García-Arellano A, Toledo E, Salas-Salvado J, Buil-Cosiales P, Corella D, et al. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: the PREDIMED trial. PLoS One. 2012;7(8):e43134.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  136. Babio N, Toledo E, Estruch R, Ros E, Martínez-González MA, Castañer O, et al. Mediterranean diets and metabolic syndrome status in the PREDIMED randomized trial. Can Med Assoc J. 2014;186(17):E649–57.

    Article  Google Scholar 

  137. Djuric Z, Vanloon G, Radakovich K, Dilaura NM, Heilbrun LK, Sen A. Design of a Mediterranean exchange list diet implemented by telephone counseling. J Am Diet Assoc. 2008;108(12):2059–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Sidahmed E, Cornellier ML, Ren J, Askew LM, Li Y, Talaat N, et al. Development of exchange lists for Mediterranean and Healthy Eating Diets: implementation in an intervention trial. J Hum Nutr Diet. 2014;27:413–25. doi:10.1111/jhn.12158.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Grimm KA, Scanlon KS, Moore LV, Grummer-Strawn LM. State-specific trends in fruit and vegetable consumption among adults. United States, 2000–2009. Morb Mortal Wkly Rep. 2010;59(35):1125–30.

    Google Scholar 

  140. Erinosho TO, Moser RP, Oh AY, Nebeling LC, Yaroch AL. Awareness of the Fruits and Veggies-More Matters campaign, knowledge of the fruit and vegetable recommendation, and fruit and vegetable intake of adults in the 2007 Food Attitudes and Behaviors (FAB) Survey. Appetite. 2012;59(1):155–60.

    Article  PubMed  Google Scholar 

  141. Stables GJ, Subar AF, Patterson BH, Dodd K, Heimendinger J, Van Duyn MA, Nebeling L. Changes in vegetable and fruit consumption and awareness among US adults: results of the 1991 and 1997 5 A Day for Better Health Program surveys. J Am Diet Assoc. 2002;102(6):809–17.

    Article  PubMed  Google Scholar 

  142. Krebs-Smith SM, Heimendinger J, Patterson BH, Subar AF, Kessler R, Pivonka E. Psychosocial factors associated with fruit and vegetable consumption. Am J Health Promot. 1995;10(2):98–104.

    Article  CAS  PubMed  Google Scholar 

  143. Rekhy R, McConchie R. Promoting consumption of fruit and vegetables for better health. Have campaigns delivered on the goals? Appetite. 2014;79:113–23.

    Article  PubMed  Google Scholar 

  144. Monsivais P, Mclain J, Drewnowski A. The rising disparity in the price of healthful foods: 2004–2008. Food Policy. 2010;35(6):514–20.

    Article  PubMed Central  PubMed  Google Scholar 

  145. Goulet J, Lamarche B, Lemieux S. A nutritional intervention promoting a Mediterranean food pattern does not affect total daily dietary cost in North American women in free-living conditions. J Nutr. 2008;138(1):54–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle A. Briggs Ph.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Briggs, M.A., Fleming, J.A., Kris-Etherton, P.M. (2016). Food-Based Approaches for Achieving Nutritional Adequacy with the Mediterranean, DASH, and USDA Food Patterns. In: Romagnolo, D., Selmin, O. (eds) Mediterranean Diet. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-27969-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27969-5_18

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-27967-1

  • Online ISBN: 978-3-319-27969-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics