Skip to main content

Equations to Determine Energy Losses in Sudden and Gradual Change of Direction

  • Conference paper
  • First Online:
Recent Advances in Fluid Dynamics with Environmental Applications

Abstract

Equations to estimate the K coefficient have been obtained for devices of change direction of ducts under forced regime. For this approach, a state of art was carried out where it was noticed that the traditionally utilized methods that evaluate the losses of the devices needed tables and/or graphics when estimating the K coefficient, which is singular to each accessory. Each theory was analyzed and classified accordingly to each piece whenever these are present in sudden or gradual conditions. The data was homogenized with the purpose to obtain average curves values of the coefficient. The results were used as data in methods of multiple linear regressions until obtain a representative equation for each case studied. These equations have the advantage of being reliable to determine the loss of K coefficient without having to manipulate tables and graphics; this allows saving time when designing and testing the hydraulic behavior in forced ducts. Finally, these equations can be implemented in advanced computational algorithms which will allow the analysis and modeling of the losses caused by friction in different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Acero, MF, Rodríguez, D (2008) Determinación experimental del coeficiente de pérdidas menores km en accesorios de agua potable de PVC. In: XVIII seminario nacional de hidráulica e hidrología, sociedad colombiana de ingenieros, Bogotá, D.C. 22–24 de mayo de

    Google Scholar 

  • Anaya-Durand AI, Cauich-Segovia GI, Funabazama-Bárcenas O, Gracia-Medrano-Bravo VA (2014) Evaluación de ecuaciones de factor de fricción explícito para tuberías. Rev Mexicana Ing Química 25:128–134

    Google Scholar 

  • Bae Y, Kim Y (2014) Prediction of local loss coefficient for turbulent flow in axisymmetric sudden expansions with a chamfer: effect of Reynolds number. J. Ann Nucl Energy 73:33–38

    Article  Google Scholar 

  • Bariviera D, Frizzone JA, Rettore NO (2013) Dimensional analysis approach to estimate local head losses in microirrigation connectors. J Irrig Sci 32:169–179

    Google Scholar 

  • CFE (1983) Conducciones a Presión, tomo 2.3, Hidrotecnia Comisión Federal de Electricidad, Instituto de Investigaciones Eléctricas, Manual de Obras Civiles

    Google Scholar 

  • Csizmadia P, Hős C (2014) CFD-based estimation and experiments on the loss coefficient for Bingham and power-law fluids through diffusers and elbows. J Comput Fluids 99:116–123

    Article  Google Scholar 

  • Deniz Ulusarslan D (2010) Effect of diameter ratio on loss coefficient of elbows in the flow of low-density spherical capsule trains. Part Sci Technol Int J 28:348–359

    Article  Google Scholar 

  • Di Maria F (2000) Design and off design pipe network geothermal power plant analysis with power pipe simulator. Energy Convers Manag 41:1223–1235

    Article  Google Scholar 

  • Elbatran AH, Yaakob OB, Ahmeda YM, Shabara HM (2015) Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: a review. Renew Sustain Energy Rev 43:40–50

    Article  Google Scholar 

  • Fuentes OA, Rosales IL (2004) Estimación de pérdidas locales de energía e domiciliarias de agua potable. Rev Mexicana Ingeniería Hidráulica en México 19:65–73

    Google Scholar 

  • Gasljevic K, Matthys EF (2009) Friction and heat transfer in drag-reducing surfactant solution flow through curved pipes and elbows. Eur J Mech B/Fluids 28:641–650

    Article  Google Scholar 

  • Hellström LHO, Zlatinov MB, Cao G, Smits AJ (2013) Turbulent pipe flow downstream of a 90o bend. J Fluid Mech 735(R7):1–12

    Google Scholar 

  • Ji C, Zhang X, Jiang M, Yan P (2010) Numerical simulation of influence of 90°-bend pipeline geometric shape on local loss coefficient. In: 2010 International conference on mechanical and electrical technology (ICMET 2010), pp 668–672

    Google Scholar 

  • Liu SH, Xue J, Fan M (2013) The calculation of mechanical energy loss for incompressible steady pipe flow of homogeneous fluid. J Hydrodyn 25:912–918

    Article  Google Scholar 

  • Miller DS (1978) Internal flow systems. BHRA (information services)

    Google Scholar 

  • Noorani A, El Khoury GK, Schlatter P (2013) Evolution of turbulence characteristics from straight to curved pipes. Int J Heat Fluid Flow 41:16–26

    Article  Google Scholar 

  • SARH (1984) Obras de Toma para Presas de Almacenamiento. Dirección General de Obras Hidráulicas y de Ingeniería Agrícola para el Desarrollo Rural, Distrito Federal, Mexico

    Google Scholar 

  • Sesma J, Molina-Martínez JM, Cavas-Martínez F, Fernández-Pacheco DG (2015) A mobile application to calculate optimum drip irrigation laterals. Agric Water Manag 151:13–18

    Article  Google Scholar 

  • Shi H, Chen G, Wang Y, Chen X (2013) Ratcheting behavior of pressurized elbow pipe with local wall thinning. Int J Press Vessels Pip 102–103:14–23

    Article  Google Scholar 

  • Sotelo AG (2013) Hidráulica general, vol 1. LIMUSA

    Google Scholar 

  • Streeter VL, Wylie EB, Bedford KB (2000) Mecánica de fluidos, 9th edn. Mc Graw-Hill International, SA

    Google Scholar 

  • USACE (1980) Engineering and design, hydraulic design of reservoir outlet department of the army. Corps of Engineers, USA

    Google Scholar 

  • USBR (1985) Diseño de presas pequeñas, united states department of the interior, bureau of reclamation, 13th edn. Compañía Editorial Continental, SA de CV

    Google Scholar 

  • Yildirim G, Singh VP (2010) A MathCAD procedure for commercial pipeline hydraulic design considering local energy losses. J. Adv Eng Softw 41:489–496

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. López-Lambraño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Villegas-León, J.J., López-Lambraño, A.A., Morales-Nava, J.G., Pliego-Díaz, M., Fuentes, C., López-Ramos, A. (2016). Equations to Determine Energy Losses in Sudden and Gradual Change of Direction. In: Klapp, J., Sigalotti, L.D.G., Medina, A., López, A., Ruiz-Chavarría, G. (eds) Recent Advances in Fluid Dynamics with Environmental Applications. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-27965-7_33

Download citation

Publish with us

Policies and ethics