Skip to main content

Dynamics of Noncohesive Confined Granular Media

  • Conference paper
  • First Online:
Recent Advances in Fluid Dynamics with Environmental Applications

Part of the book series: Environmental Science and Engineering ((ENVENG))

Abstract

Despite the ubiquitousness and technological and scientific importance of granular matter, our understanding is still very poor compared to molecular fluids and solids. Until today, there is no unified description, which indeed seems unreachable. However, it has been proposed that important advances could be attained for noncohesive, hard-sphere like systems, by combining fluid dynamics with phase-field modeling through an appropriate order parameter (Aranson and Tsimring 2006). Here, we present a review of the dynamics of confined granular matter, for which this systematic approach has proven its value. Motivated by the pioneering work of Olafsen and Urbach (1998), many experimental, theoretical and numerical studies of model confined granular systems have been realized, which have unveiled a very large variety of fundamental phenomena. In this review, we focus on few of these fundamental aspects, namely phase coexistence, effective surface tension, and a detailed description of the liquid state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Amarouchene Y, Boudet JF, Kellay H (2008) Capillarylike fluctuations at the interface of falling granular jets. Phys Rev Lett 100:218001

    Google Scholar 

  • Andreotti B, Forterre Y, Pouliquen O (2013) Granular media: between fluid and solid. University Cambridge Press, Cambridge

    Google Scholar 

  • Aranson IS, Blair D, Kalatsky VA, Crabtree GW, Kwok WK, Vinokur VM, Welp U (2000) Electrostatically driven granular media: phase transitions and coarsening. Phys Rev Lett 84:3306–3309

    Google Scholar 

  • Aranson IS, Tsimring LS (2006) Patterns and collective behavior in granular media: theoretical concepts. Rev Mod Phys 78:641–692

    Google Scholar 

  • Aranson IS, Snezhko A, Olafsen JS, Urbach JS (2008) Comment on “Long-lived giant number fluctuations in a swarming granular nematic”. Science 320:612c–612c

    Google Scholar 

  • Argentina M, Clerc MG, Soto R (2002) van der Waals-like transition in fluidized granular matter. Phys Rev Lett 89:044301

    Google Scholar 

  • Barrat A, Trizac E (2001) Inelastic hard spheres with random restitution coefficient: a new model for heated granular fluids. Adv Complex Syst 4:299–307

    Google Scholar 

  • Barrat A, Trizac E, Fuchs JN (2001) Heated granular fluids: the random restitution coefficient approach. Eur Phys J E 5:161–170

    Google Scholar 

  • Ben-Naim E, Daya ZA, Vorobieff P, Ecke RE (2001) Knots and random walks in vibrated granular chains. Phys Rev Lett 86:1414–1417

    Google Scholar 

  • Brey JJ, García de Soria MI, Maynar P, Buzón V (2014) Memory effects in the relaxation of a confined granular gas. Phys Rev E 90:032207

    Google Scholar 

  • Brey JJ, Buzón V, Maynar P, García de Soria MI (2015) Hydrodynamics for a model of a confined quasi-two-dimensional granular gas. Phys Rev E 91:052201

    Google Scholar 

  • Brito R, Risso D, Soto R (2013) Hydrodynamic modes in a confined granular fluid. Phys Rev E 87:022209

    Google Scholar 

  • Castillo G, Mujica N, Soto R (2012) Fluctuations and criticality of a granular solid-liquid-like phase transition. Phys Rev Lett 109:095701

    Google Scholar 

  • Castillo G, Mujica N, Soto R (2015) Universality and criticality of a second-order granular solid-liquid-like phase transition. Phys Rev E 91:012141

    Google Scholar 

  • Cartes C, Clerc MG, Soto R (2004) van der Waals normal form for a one-dimensional hydrodynamic model. Phys Rev E 70:031302

    Google Scholar 

  • Cheng X, Varas G, Daniel C, Jaeger HM, Nagel SR (2007) Collective behavior in a granular jet: emergence of a liquid with zero surface tension. Phys Rev Lett 99:188001

    Google Scholar 

  • Cheng X, Xu L, Patterson A, Jaeger HM, Nagel SR (2008) Towards the zero-surface-tension limit in granular fingering instability. Nat Phys 4:234–237

    Google Scholar 

  • Clerc MG, Cordero P, Dunstan J, Huff K, Mujica N, Risso D, Varas G (2008) Liquid-solid-like transition in quasi-one-dimensional driven granular media. Nat Phys 4:249–254

    Google Scholar 

  • Clewett JPD, Roeller K, Bowley RM, Herminghaus S, Swift MR (2012) Emergent surface tension in vibrated, noncohesive granular media. Phys Rev Lett 109:228002

    Google Scholar 

  • Duran J (2001) Rayleigh-Taylor instabilities in thin films of tapped powder. Phys Rev Lett 87:254301

    Google Scholar 

  • Géminard JC, Laroche C (2004) Pressure measurement in two-dimensional horizontal granular gases. Phys Rev E 70:021301

    Google Scholar 

  • Goldhirsch I, Zanetti G (1993) Clustering instability in dissipative gases. Phys Rev Lett 70:1619–1622

    Google Scholar 

  • Gradenigo G, Sarracino A, Villamaina D, Puglisi A (2011) Non-equilibrium length in granular fluids: from experiment to fluctuating hydrodynamics. EPL 96:14004

    Google Scholar 

  • Hohenberg PC, Halperin BI (1977) Theory of dynamic critical phenomena. Rev Mod Phys 49:435–479

    Google Scholar 

  • Howell DW, Aronson IS, Crabtree GW (2001) Dynamics of electrostatically driven granular media: effects of humidity. Phys Rev E 63:050301

    Google Scholar 

  • Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68:1259–1273

    Google Scholar 

  • Khain E, Aranson IS (2011) Hydrodynamics of a vibrated granular monolayer. Phys Rev E 84:031308

    Google Scholar 

  • Lobkovsky AE, Vega-Reyes F, Urbach JS (2009) The effects of forcing and dissipation on phase transitions in thin granular layers. Eur Phys J Special Topics 179:113–122

    Google Scholar 

  • Losert W, Cooper DGW, Gollub JP (1999a) Propagating front in an excited granular layer. Phys Rev E 59:5855–5861

    Google Scholar 

  • Losert W, Cooper DGW, Delour J, Kudrolli A, Gollub JP (1999b) Velocity statistics in excited granular media. Chaos 9:682–690

    Google Scholar 

  • Luu L-H, Castillo G, Mujica N, Soto R (2013) Capillarylike fluctuations of a solid-liquid interface in a noncohesive granular system. Phys Rev E 87:040202

    Google Scholar 

  • May C, Wild M, Rehberg I, Huang K (2013) Analog of surface melting in a macroscopic nonequilibrium system. Phys Rev E 88:062201

    Google Scholar 

  • Melby P, Vega Reyes F, Prevost A, Robertson R, Kumar P, Egolf DA, Urbach JS (2005) The dynamics of thin vibrated granular layers. J Phys Cond Mat 17:S2689–S2704

    Google Scholar 

  • Merminod S, Berhanu M, Falcon E (2014) Transition from a dissipative to a quasi-elastic system of particles with tunable repulsive interactions. EPL 106:44005

    Google Scholar 

  • Narayan V, Ramaswamy S, Menon N (2007) Long-lived giant number fluctuations in a swarming granular nematic. Science 317:105–108

    Google Scholar 

  • Narayan V, Ramaswamy S, Menon N (2008) Response to comment on “Long-lived giant number fluctuations in a swarming granular nematic”. Science 320:612d–612d

    Google Scholar 

  • Néel B, Rondini I, Turzillo A, Mujica N, Soto R (2014) Dynamics of a first order transition to an absorbing state. Phys Rev E 89:042206

    Google Scholar 

  • Olafsen JS, Urbach JS (1998) Clustering, order, and collapse is a driven granular monolayer. Phys Rev Lett 81:4369–4372

    Google Scholar 

  • Olafsen JS, Urbach JS (1999) Velocity distributions and density fluctuations in a granular gas. Phys Rev E 60:R2468–R2471

    Google Scholar 

  • Olafsen JS, Urbach JS (2001) Experimental observations of non-equilibrium distributions and transitions in a 2D granular gas, granular gases. In: Pöschel T, Luding S (eds). Springer, pp 410–428

    Google Scholar 

  • Olafsen JS, Urbach JS (2005) Two-dimensional melting far from equilibrium in a granular monolayer. Phys Rev Lett 95:098002

    Google Scholar 

  • Orza JAG, Brito R, Van Noije TPC, Ernst MH (1997) Patterns and long range correlations in idealized granular flows. Int J Mod Phys C 8:953–965

    Google Scholar 

  • Oyarte L, Gutiérrez P, Aumaître S, Mujica N (2013) Phase transition in a out-of-equilibrium monolayer of dipolar vibrated grains. Phys Rev E 87:022204

    Google Scholar 

  • Pacheco-Vázquez F, Caballero-Robledo GA, Ruiz-Suárez JC (2009) Superheating in granular matter. Phys Rev Lett 102:170601

    Google Scholar 

  • Peng G, Ohta T (1998) Steady state properties of a driven granular medium. Phys Rev E 58:4637

    Google Scholar 

  • Pérez-Ángel G, Nahmad-Molinari Y (2011) Bouncing, rolling, energy flows, and cluster formation in a two-dimensional vibrated granular gas. Phys Rev E 84:041303

    Google Scholar 

  • Prevost A, Melby P, Egolf DA, Urbach JS (2004) Non-equilibrium two-phase coexistence in a confined granular layer. Phys Rev E 70:050301(R)

    Google Scholar 

  • Prevost A, Egolf DA, Urbach JS (2002) Forcing and velocity correlations in a vibrated granular monolayer. Phys Rev Lett 89:084301

    Google Scholar 

  • Puglisi A, Gnoli A, Gradenigo G, Sarracino A, Villamaina D (2012) Structure factors in granular experiments with homogeneous fluidization. J Chem Phys 136:014704

    Google Scholar 

  • Reis P, Ingale RA, Shattuck MD (2006) Crystallization of a quasi-two-dimensional granular fluid. Phys Rev Lett 96:258001

    Google Scholar 

  • Reis P, Ingale RA, Shattuck MD (2007) Caging dynamics in a granular fluid. Phys Rev Lett 98:188301

    Google Scholar 

  • Reyes FV, Urbach JS (2008) Effect of inelasticity on the phase transitions of a thin vibrated granular layer. Phys Rev E 78:051301

    Google Scholar 

  • Rivas N, Cordero P, Risso D, Soto R (2011a) Segregation in quasi two-dimensional granular systems. New J Phys 13:055018

    Google Scholar 

  • Rivas N, Ponce S, Gallet B, Risso D, Soto R, Cordero P, Mujica N (2011b) Sudden chain energy transfer events in vibrated granular media. Phys Rev Lett 106:088001

    Google Scholar 

  • Rivas N, Cordero P, Risso D, Soto R (2012) Characterization of the energy bursts in vibrated shallow granular systems. Granul Matter 14:157–162

    Google Scholar 

  • Roeller K, Clewett JPD, Bowley RM, Herminghaus S, Swift MR (2011) Liquid-gas phase separation in confined vibrated dry granular matter. Phys Rev Lett 107:048002

    Google Scholar 

  • Royer JR, Evans DJ, Oyarte L, Guo Q, Kapit E, Möbius ME, Waitukaitis SR, Jaeger HM (2009) High-speed tracking of rupture and clustering in freely falling granular streams. Nature 459:1110–1113

    Google Scholar 

  • Safford K, Kantor Y, Kardar M, Kudrolli A (2009) Structure and dynamics of vibrated granular chains: comparison to equilibrium polymers. Phys Rev E 79:061304

    Google Scholar 

  • Soto R, Risso D, Brito R (2015) Shear viscosity of a model for confined granular media. Phys Rev E 90:062204

    Google Scholar 

  • Ulrich S, Zippelius A (2012) Stability of freely falling granular streams. Phys Rev Lett 109:166001

    Google Scholar 

  • van Noije TPC, Ernst MH (1998) Velocity distributions in homogeneous granular fluids: the free and the heated case. Granul Matter 1:57–64

    Google Scholar 

  • van Noije TPC, Ernst MH, Trizac E, Pagonabarraga I (1999) Randomly driven granular fluids: large-scale structure. Phys Rev E 59:4236

    Google Scholar 

Download references

Acknowledgments

We acknowledge the support of Fondecyt Grants No. 1150393 (N.M.) and No. 1140778 (R.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mujica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mujica, N., Soto, R. (2016). Dynamics of Noncohesive Confined Granular Media. In: Klapp, J., Sigalotti, L.D.G., Medina, A., López, A., Ruiz-Chavarría, G. (eds) Recent Advances in Fluid Dynamics with Environmental Applications. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-27965-7_32

Download citation

Publish with us

Policies and ethics