Skip to main content

Comparative Analysis of the Air Flow in Different Cultures Inside a Greenhouse Using CFD

  • Conference paper
  • First Online:
Recent Advances in Fluid Dynamics with Environmental Applications

Part of the book series: Environmental Science and Engineering ((ENVENG))

Abstract

The air-flow dynamics in crops (cultures), when a crop is considered as porous media, is determined by factors depending of the phenological stage which define size and shape of the leaves. Leaves topology with respect to the wind direction determines the porosity of the media and in consequence the flow rate. This flow rate is a function of the porosity and permeability, which determines the dragging coefficient. The presence of crops in a greenhouse causes a consumption of momentum due to the resistance that the leaves offer for the friction force (drag forces). In this paper the greenhouse airflow dynamics is analyze for four different crops with different leaf configurations. Computational Fluid Dynamics (CFD) was used to model the airflow dynamic behavior considering a crop as porous media. The pressure reduction due to the effect of inertial force is represented by a Forcchaimer equation, which describe dragging forces (drag effect) depending on the crop density foliar area. The results indicate a reduction of 33 % in the wind speed along the cropped area; this causes a thermal gradient increase of 6 K in a length of 34 m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bartzanas T, Boulard T, Kittas C (2004) Effect of vent arrangement on winward ventilation of a tunnel greenhouse. Biosyst Eng 88(4):479–490

    Article  Google Scholar 

  • Flores-Velazquez J, Montero JI (2008) Computational fluid dynamics CFD study of large-scale screenhouse. Acta Hort 797:117–122

    Article  Google Scholar 

  • Flores-Velazquez J (2010) Anisáis de la ventilación en los principales modelos de invernaderos en Mejico mediante dinámica de fluidos computacional (CFD). Tesis doctoral. Universidad de Almería. Almería, España

    Google Scholar 

  • Fatnassi H, Boulard T, Bouirden L (2003) Simulation of climatic conditions in full-scale greenhouse fitted with insect-proof screens. Agric For Meteorol 118:97–111

    Article  Google Scholar 

  • Hsu C, Cheng P (1990) Thermal dispersion in a porous medium. Int J Heat Mass Transf 33:1587–1597

    Google Scholar 

  • Haxaire R (1999) Caractérisation et Modélisation des écoulements d’air dans une serre. [Characterization and modelling of the air flows within a greenhouse.] Thèse de Docteur en Sciences de l’Ingénieur de l’Université de Nice, Sophia Antipolis, 148 pp

    Google Scholar 

  • Haxaire R, Boulard T, Mermier M (2000) Greenhouse natural ventilation by wind forces. Acta Hortic 534:31–40

    Article  Google Scholar 

  • Lee IB, Short TH (2000) Two-dimensional numeric simulation of natural ventilation in a multi-span greenhouse. T ASAE, 43(3):745–753

    Google Scholar 

  • Majdoubi H, Boulard T, Bouirden L (2009) Airflow and microclimate patterns in a one-hectare Canary type greenhouse: an experimental and CFD assisted study. Agric For Meteorol 149(6–7):1050–1062

    Article  Google Scholar 

  • Miguel AF, Vande Braak NJ, Bot GP (1997) Analysis of the airflow characteristic of greenhouse screening materials. J Agric Eng Kes 67:105–112

    Article  Google Scholar 

  • Molina-Aiz FD, Valera DL, Alvarez AJ (2004) Measurement and simulation of climate inside almeria-type greenhouse using computational fluid dynamics. Agric Forest Meteorol 125:33–51

    Article  Google Scholar 

  • Molina-Aiz FD, Valera DL, Alvarez AJ, Madueno A (2006) A wind tunnel study of airflow through horticultural crops: determination of the drag coefficient. Biosystem Eng 93(4):447–457

    Google Scholar 

  • Pérez-Parra JJ, Baeza E, Montero JI, Bailey BJ (2004) Natural ventilation of parral greenhouses. Biosyst Eng 87(3):89–100

    Article  Google Scholar 

  • Romero-Gomez P, Choi YC, Lopez CIL (2010) Enhancement of the greenhouse air ventilation rate under climate conditions of central Mexico. Agrociencia 44(1):1–15

    Google Scholar 

  • Stanghellini C (1987) Transpiration of greenhouse crops: an aid to climate management. Phd Thesis, Agricultural University of Wageningen, The Netherlands, p 150

    Google Scholar 

  • Wilson JD (1985) Numerical studies of flow through a windbreak. J Wind Eng Aerodyn 21:119–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Flores-Velázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Flores-Velázquez, J., Ojeda B, W., Rojano, A. (2016). Comparative Analysis of the Air Flow in Different Cultures Inside a Greenhouse Using CFD. In: Klapp, J., Sigalotti, L.D.G., Medina, A., López, A., Ruiz-Chavarría, G. (eds) Recent Advances in Fluid Dynamics with Environmental Applications. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-27965-7_29

Download citation

Publish with us

Policies and ethics