Skip to main content

Two-Dimensional Motion of a Viscoelastic Membrane in an Incompressible Fluid: Applications to the Cochlear Mechanics

  • Conference paper
  • First Online:
Recent Advances in Fluid Dynamics with Environmental Applications

Abstract

In this work we present the two-dimensional motion of a viscoelastic membrane immersed in incompressible inviscid and viscous fluids. The motion of the fluid is modelled by two-dimensional Navier-Stokes equations, and a constitutive equation is considered for the membrane which captures along with the fluid equations the essential features of the vibrations of the fluid. By using the Fourier transform, the linearized equations are reduced to a functional equation for membrane displacement which is solved analytically and the inverse transform is evaluated asymptotically. Results obtained show some of the basic known characteristics of cochlear mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • David C, Charles T, Katherine A (2014) Two-dimensional analysis of fluid motion in the cochlea resulting from compressional bone conduction. J Sound Vib 333:1067–1078

    Article  Google Scholar 

  • Givelberg E, Julian B (2003) A comprehensive three-dimensional model of the cochlea. J Comput Phys 191:377–391

    Article  Google Scholar 

  • Griffel DH (2002) Applied functional analysis. Dover, 2a Ed

    Google Scholar 

  • Leveque RJ, Peskin CS, Lax PD (1985) Solution of a two-dimensional Cochlea model using transform techniques. SIAM J Appl Math 45(3):450–464

    Article  Google Scholar 

  • Leveque RJ, Peskin CS, Lax PD (1988) Solution of a two-dimensional Cochlea model with fluid viscosity. SIAM J Appl Math 48(1):191–213

    Article  Google Scholar 

  • Pozrikidis C (2007) Boundary-integral modeling of cochlear hydrodynamics. J Fluids Struct 24:336–365

    Article  Google Scholar 

  • Strichartz RS (1994) A guide to distribution theory and fourier transforms. CRC Press, Boca Raton

    Google Scholar 

  • von Békésy G (1960) Experiments in hearing. McGraw-Hill, New York

    Google Scholar 

  • Zemanian AH (1965) Distribution theory and transform analysis: an introduction to generalized functions with applications. McGraw-Hill

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to JX Velasco-Hernández, MA Moreles-Vazquez, LA Cisneros-Ake, and E. Maximenko. Y.N. Domínguez-del Ángel and JG González-Santos acknowledge support from COFFA-IPN-20141475. This work has been partially supported by the Consejo Nacional de Ciencia y Tecnología of Mexico (CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Núñez-López .

Editor information

Editors and Affiliations

Appendix

Appendix

A continuous linear functional \({{\varvec{f}}}\in \mathscr {D}'\) on the space \(\mathscr {D}\) of \(C^{\infty }\) test functions having compact support is called a distribution, or generalized function. The image of the test function \(\phi \) under \({{\varvec{f}}}\) is denoted by \(\langle {{\varvec{f}}},\phi \rangle \). Every locally integrable function f there corresponds to a distribution \({{\varvec{f}}}\) defined by

$$ \langle {{\varvec{f}}},\phi \rangle =\int _{-\infty }^{\infty }f(x)\phi (x)dx\,, \quad for \quad \phi (x)\in \mathscr {D}\,. $$

The distribution \({{\varvec{f}}}\) is said to be generated by the function f. For any distribution \({{\varvec{f}}}\), the functional \({{\varvec{f}}}':\phi \longmapsto -\langle {{\varvec{f}}},\phi '\rangle \) is a distribution. The derivative of a distribution \({{\varvec{f}}}\) is also a distribution \({{\varvec{f}}}'\) defined by \(\langle {{\varvec{f}}}',\phi \rangle =-\langle {{\varvec{f}}},\phi '\rangle \) for all \(\phi \in \mathscr {D}\). A \(C^{\infty }\) function \(\phi (x)\) is of class \(\mathscr {S}(\mathbf {R})\) if

$$ x^{n}\phi ^{r}(x)\rightarrow 0 \quad \text {as} \quad x\rightarrow \pm \infty \quad \text {for}\,\,\text {all} \quad n,r\ge 0\,. $$

\(\mathscr {S}\) is called the Schwartz class and its elements are called test functions too. A distribution of slow growth (tempered distribution) is a continuous linear functional on the space \(\mathscr {S}\). The space of all distributions of slow growth is denoted by \(\mathscr {S}'\). \(\mathscr {D}\) is a subspace of \(\mathscr {S}\), but the distributions of slow growth comprise a proper subspace of \(\mathscr {D}\), \(\mathscr {D}\subset \mathscr {S}\subset \mathscr {S}'\subset \mathscr {D}'\). If f(x) satisfies the condition \(\lim \limits _{|x|\rightarrow \infty }|x|^{-N}f(x)=0\) for some integer N, then f(x) is said to be of slow growth. If f is locally integrable and of slow growth, then f defines a tempered distribution given by

$$ \langle {{\varvec{f}}},\phi \rangle =\int _{-\infty }^{\infty }f(x)\phi (x)dx\,, \quad for \quad \phi (x)\in \mathscr {S}\,. $$

Distributions that can be generated through the above expression are called regular distributions. Distributions that are not regular are called singular distributions. If \({{\varvec{f}}}\) is a tempered distribution, then the functional \({\hat{{{{\varvec{f}}}}}}:\phi \longmapsto \langle {{\varvec{f}}},\hat{\phi }\rangle \) is a tempered distribution.

Definition 1

(Generalized Fourier Transform) If \({{\varvec{f}}}\) is a tempered distribution, its Fourier transform is the tempered distribution \({\hat{{{\varvec{f}}}}}\) defined by \(\langle {\hat{{{\varvec{f}}}}},\phi \rangle =\langle {{\varvec{f}}},\hat{\phi }\rangle \) for all \(\phi \in \mathscr {S}\).

The inverse Fourier transform of a tempered distribution is also a tempered distribution defined by \(\langle \mathscr {F}^{-1}\left\{ {{\varvec{f}}}\right\} ,\phi \rangle =\langle {{\varvec{f}}},\mathscr {F}^{-1}\left\{ \phi \right\} \rangle \) for all \(\phi \in \mathscr {S}\). We now calculate the generalized Fourier transforms of some functions.

Example 1

Consider the Dirac delta function \(\delta (x)\) (unsuitably called fuction). To calculate \(\mathscr {F}\left\{ \delta ^{(k)}(x-a)\right\} \) we proceed as follows.

$$\begin{aligned} \left\langle \mathscr {F}\left\{ \delta ^{(k)}(x-a)\right\} ,\phi (\xi )\right\rangle= & {} \left\langle \delta ^{(k)}(x-a),\mathscr {F}\left\{ \phi \right\} \right\rangle =(-1)^{k}\left\langle \delta (x-a),\left( \mathscr {F}\left\{ \phi \right\} \right) ^{(k)}\right\rangle \nonumber \\= & {} (-1)^{k}\left\langle \delta (x-a),\mathscr {F}\left\{ (-2\pi i\xi )^{k}\phi (\xi )\right\} \right\rangle \nonumber \\= & {} (-1)^{k}\int _{-\infty }^{\infty }(-2\pi i\xi )^{k}\phi (\xi )e^{-2\pi ia\xi }d\xi \nonumber \\= & {} \left\langle (2\pi i\xi )^{k}e^{-2\pi ia\xi },\phi (\xi )\right\rangle \nonumber \end{aligned}$$

Hence \(\mathscr {F}\left\{ \delta ^{(k)}(x-a)\right\} =(2\pi i\xi )^{k}e^{-2\pi ia\xi }\).

Example 2

Let \({{\varvec{f}}}\) be the distribution generated by the function \(f(x)=\ln |x|\). Note that \(\lim \limits _{\varepsilon \rightarrow 0}\frac{\left( 1-|x|^{-\varepsilon }\right) }{\varepsilon }=\ln |x|\). Then

$$\begin{aligned} \left\langle \mathscr {F}\left\{ \ln \left| x\right| \right\} ,\phi (\xi )\right\rangle= & {} \int _{-\infty }^{\infty }\ln \left| x\right| \mathscr {F}\left\{ \phi (\xi )\right\} dx=\int _{-\infty }^{\infty }\ln \left| x\right| \left\{ \int _{-\infty }^{\infty }\phi (\xi )e^{-2\pi ix\xi }d\xi \right\} dx \\= & {} \int _{-\infty }^{\infty }\phi (\xi )\left\{ \int _{-\infty }^{\infty }\lim _{\varepsilon \rightarrow 0}\frac{\left( 1-\left| x\right| ^{-\varepsilon }\right) }{\varepsilon }e^{-2\pi ix\xi }dx\right\} d\xi \\= & {} \int _{-\infty }^{\infty }\phi (\xi )\lim _{\varepsilon \rightarrow 0}\left\{ \frac{1}{\varepsilon }\left[ \int _{-\infty }^{\infty }e^{-2\pi ix\xi }dx-\int _{-\infty }^{\infty }\left| x\right| ^{-\varepsilon }e^{-2\pi ix\xi }dx\right] \right\} d\xi \\= & {} \int _{-\infty }^{\infty }\phi (\xi )\lim _{\varepsilon \rightarrow 0}\left\{ \frac{1}{\varepsilon }\left[ \delta (\xi )-\varGamma (1-\varepsilon )\sin (\frac{\varepsilon \pi }{2})2^{\varepsilon }\pi ^{(-1+\varepsilon )}\left| \xi \right| ^{(-1+\varepsilon )}\right] \right\} d\xi \,, \\= & {} \left\langle -\frac{1}{2}\left| \xi \right| ^{-1}-\left( \gamma +\ln 2\pi \right) \delta (\xi ),\phi (\xi )\right\rangle \,, \end{aligned}$$

by considering that \(\varGamma (1-\varepsilon )\sin (\frac{\varepsilon \pi }{2})2^{\varepsilon }\pi ^{(-1+\varepsilon )}=\frac{\varepsilon }{2}+\left( \frac{\gamma }{2}+\frac{\ln 2\pi }{2}\right) \varepsilon ^{2}+O(\varepsilon ^{3})\), \(\lim \limits _{\varepsilon \rightarrow 0}\varepsilon \left| \xi \right| ^{\varepsilon -1}=2\delta (\xi )\), and \(\lim \limits _{\varepsilon \rightarrow 0}\left\{ \left| \xi \right| ^{(-1+\varepsilon )}-2\varepsilon ^{-1}\delta (\xi )\right\} =\left| \xi \right| ^{-1}\).

Example 3

We consider the unit step function defined by

$$ U(\xi ) =\frac{1+ \text{ sgn }(\xi )}{2}= \left\{ \begin{array}{cl} 1 &{} \quad \text{ si } \quad \xi \ge 0 \\ 0 &{} \quad \text{ si } \quad \xi < 0 \end{array}\right. \,. $$

We have

$$\begin{aligned} \left\langle \mathscr {F}^{-1}\left\{ U(\xi )\right\} , \phi (x)\right\rangle= & {} \left\langle U(\xi ),\mathscr {F}^{-1}\left\{ \phi (x)\right\} \right\rangle =\int _{-\infty }^{\infty }U(\xi )\left\{ \int _{-\infty }^{\infty }\phi (x)e^{2\pi ix\xi }dx\right\} d\xi \\= & {} \int _{-\infty }^{\infty }\phi (x)\left\{ \int _{-\infty }^{\infty }U(\xi )e^{2\pi ix\xi }d\xi \right\} dx \\= & {} \int _{-\infty }^{\infty }\phi (x)\left\{ \frac{1}{2}\int _{-\infty }^{\infty }\left( 1+\text{ sgn }(\xi )\right) e^{2\pi ix\xi }d\xi \right\} dx \\= & {} \int _{-\infty }^{\infty }\phi (x)\frac{1}{2}\left( \delta (x)+\frac{i}{\pi x}\right) dx=\left\langle \frac{1}{2}\left( \delta (x)+\frac{i}{\pi x}\right) ,\phi (x)\right\rangle \,. \end{aligned}$$

Hence, \(\mathscr {F}^{-1}\left\{ U(\xi )\right\} =\frac{1}{2}\left( \delta (x)+\frac{i}{\pi x}\right) \).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Domínguez-del Ángel, Y.N., Núñez-López, M., González-Santos, J.G., López-Villa, A. (2016). Two-Dimensional Motion of a Viscoelastic Membrane in an Incompressible Fluid: Applications to the Cochlear Mechanics. In: Klapp, J., Sigalotti, L.D.G., Medina, A., López, A., Ruiz-Chavarría, G. (eds) Recent Advances in Fluid Dynamics with Environmental Applications. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-27965-7_18

Download citation

Publish with us

Policies and ethics