Skip to main content

Production of Industrial Enzymes in Trichoderma reesei

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Trichoderma reesei (teleomorph Hypocrea jecorina) is one of the two major fungal platforms for industrial enzyme production, along with Aspergillus sp. Its use derives from its history as a model organism for studies on cellulose degradation and its cellulase enzyme complex since the 1940s, which suggested its use for industrial bioethanol manufacturing during the oil crisis in the mid 1970s. Extensive strain development campaigns by different laboratories proved that the wild type isolate QM6a can be developed into superior production strains, and later the genetic tools were established for the species, which allowed the strains to be tailored for maximum productivity with optimised backgrounds. T. reesei has now maintained its position as a highly productive, easy-to-handle, robust and safe cell factory for more than 40 years. The recently revived interest in lignocellulosic bioethanol paved the way for a comeback in the use of T. reesei native cellulase complex, whereas advances in the development of molecular biology tools—such as bioinformatics and mating—have provided further refinements in the modern strain development of T. reesei for enzyme and other protein production in virtually all segments of industrial biotechnology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If 4 g of sugar are consumed for each 1 g of secreted enzyme, 400 g sugar/L would be required to achieve 100 g of secreted enzyme /L (Pourquie et al. 1988; Cherry and Fidantsef 2003).

  2. 2.

    VTT = Technical Research Centre of Finland, Espoo, Finland. ALKO = State Alcohol Monopoly, Helsinki, Finland. In 1995, the enzyme business was moved to Primalco Biotec at the Altia Group, Helsinki, Finland.

  3. 3.

    CAYLA = Société CAYLA, Toulouse, France

  4. 4.

    CETUS = Cetus Corporation, Berkeley, CA, USA

  5. 5.

    Kyowa = Kyowa Hakko Kogyo Co., Ltd., Tokyo, Japan

References

  • Adav SS, Chao LT, Sze SK. Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Mol Cell Proteomics. 2012;11(7):M111.012419. doi:10.1074/mcp.M111.012419.

    Article  CAS  Google Scholar 

  • Adrio JL, Demain AL. Microbial Enzymes: Tools for Biotechnological Processes. Biomolecules. 2014;4(1):117–39. doi:10.3390/biom4010117.

    Article  CAS  Google Scholar 

  • Akua T, Shaul O. The Arabidopsis thaliana MHX gene includes an intronic element that boosts translation when localized in a 5′ UTR intron. J Exp Bot. 2013;64(14):4255–70. doi:10.1093/jxb/ert235.

    Article  CAS  Google Scholar 

  • Alikhanian SI. Induced mutagenesis in the selection of microorganisms. Adv Appl Microbiol. 1962;4:1–50.

    Article  CAS  Google Scholar 

  • Al-Sheikh H, Watson AJ, Lacey GA, Punt PJ, Mackenzie DA, Jeenes DJ, et al. Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger. Mol Microbiol. 2004;53(6):1731–42. doi:10.1111/j.1365-2958.2004.04236.x.

    Article  CAS  Google Scholar 

  • AMFEP (Association of Manufacturers and Formulators of Enzyme Products). List of commercially available enzymes. 2014; Amfep/14/12. http://www.amfep.org/sites/g/files/g412356/f/201404/Amfep-Enzymes-list-April-2014_0.pdf. Accessed 2014 Jun 26.

  • Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta. 1999;1473:4–8.

    Article  CAS  Google Scholar 

  • Aro N, Saloheimo A, Ilmen M, Penttila M. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem. 2001;276(26):24309–14. doi:10.1074/jbc.M003624200.

    Article  CAS  Google Scholar 

  • Aro N, Ilmen M, Saloheimo A, Penttila M. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol. 2003;69(1):56–65.

    Article  CAS  Google Scholar 

  • Arvas M, Haiminen N, Smit B, Rautio J, Vitikainen M, Wiebe M, et al. Detecting novel genes with sparse arrays. Gene. 2010;467(1–2):41–51. doi:10.1016/j.gene.2010.07.009.

    Article  CAS  Google Scholar 

  • Bailey MJ, Nevalainen KMH. Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microb Technol. 1981;3:153–7.

    Article  CAS  Google Scholar 

  • Bairoch A. The enzyme database in 2000. Nucleic Acids Res. 2000;28(1):304–5.

    Article  CAS  Google Scholar 

  • Bento MHLPC, Plumstead PW, Salmon L, Nyachoti CM, Bikker P. Dose response of a new phytase on dry matter, calcium, and phosphorus digestibility in weaned piglets. J Anim Sci. 2012;90:245–7.

    Article  Google Scholar 

  • Berges T, Barreau C, Peberdy JF, Boddy LM. Cloning of a Aspergillus niger invertase gene by expression in Trichoderma reesei. Curr Genet. 1993;24:53–9.

    Article  CAS  Google Scholar 

  • Bergquist P, Te’o V, Gibbs M, Cziferszky A, de Faria F, Azevedo M, et al. Expression of xylanase enzymes from thermophilic microorganisms in fungal hosts. Extremophiles. 2002;6(3):177–84. doi:10.1007/s00792-001-0252-5.

    Article  CAS  Google Scholar 

  • Blumenthal CZ. Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul Toxicol Pharmacol. 2004;39(2):214–28. doi:10.1016/j.yrtph.2003.09.002.

    Article  CAS  Google Scholar 

  • Braaksma M, Punt PJ. Aspergillus as a cell factory for protein production: Controlling protease activity in fungal production. In: Goldman GH, Osmani SA, editors. The Aspergilli, Genomics, medical aspects, biotechnology, and research methods. Boca Raton: CRC Press/Taylor & Francis; 2008.

    Google Scholar 

  • Carter G, Allison D, Rey MW, Dunn-Coleman NS. Chromosomal and genetic analysis of the electrophoretic karyotype of Trichoderma reesei: mapping of the cellulase and xylanase genes. Mol Microbiol. 1992;6(15):2167–74.

    Article  CAS  Google Scholar 

  • Chen Y, Inouye M. The intramolecular chaperone-mediated protein folding. Curr Opin Struct Biol. 2008;18(6):765–70.

    Article  CAS  Google Scholar 

  • Chen X, Luo Y, Yu H, Sun Y, Wu H, Song S, et al. Transcriptional profiling of biomass degradation-related genes during Trichoderma reesei growth on different carbon sources. J Biotechnol. 2014;173:59–64. doi:10.1016/j.jbiotec.2014.01.011.

    Article  CAS  Google Scholar 

  • Cherry JR, Fidantsef AL. Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol. 2003;14:438–43.

    Article  CAS  Google Scholar 

  • Conesa A, Punt PJ, van Luijk N, van den Hondel CA. The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol. 2001;33(3):155–71. doi:10.1006/fgbi.2001.1276.

    Article  CAS  Google Scholar 

  • Curach NC, Te’o VS, Gibbs MD, Bergquist PL, Nevalainen K. Isolation, characterization and expression of the hex1 gene from Trichoderma reesei. Gene. 2004;331:133–40. doi:10.1016/j.gene.2004.02.007.

    Article  CAS  Google Scholar 

  • Curran KA, Karim AS, Gupta A, Alper HS. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metab Eng. 2013;19:88–97. doi:10.1016/j.ymben.2013.07.001.

    Article  CAS  Google Scholar 

  • de Faria FP, Te’o VS, Bergquist PL, Azevedo MO, Nevalainen KM. Expression and processing of a major xylanase (XYN2) from the thermophilic fungus Humicola grisea var. thermoidea in Trichoderma reesei. Lett Appl Microbiol. 2002;34:1–5.

    Article  Google Scholar 

  • Debuchy R, Berteaux-Lecellier V, Silar P. Mating systems and sexual morphogenesis in Ascomycetes. In: Borkovich KA, Ebbole DJ, editors. Cellular and molecular biology of filamentous fungi. Washington, DC: ASM Press; 2010. p. 501–35.

    Chapter  Google Scholar 

  • Degenkolb T, Aghcheh RK, Dieckmann R, Neuhof T, Baker SE, Druzhinina IS, et al. The production of multiple small peptaibol families by single 14-Module peptide synthetases in Trichoderma/Hypocrea. Chem Biodivers. 2012;9:499–535.

    Article  CAS  Google Scholar 

  • dos Santos CL, Pedersoli WR, Antonieto AC, Steindorff AS, Silva-Rocha R, Martinez-Rossi NM, et al. Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnol Biofuels. 2014;7(1):41.

    Article  Google Scholar 

  • Durand H, Baron H, Calmels T, Tiraby G. Classical and molecular genetics applied to Trichoderma reesei for the selection of improved cellulolytic industrial strains. In: Aubert J, Beguin P, Millet J, editors. Biochemistry and genetics of cellulose degradation. London: Academic; 1988. p. 135–51.

    Google Scholar 

  • Emalfarb MA, Punt PJ, van Zeijl CM, van den Hondel C; Dyadic International Inc., assignee. High-throughput screening of expressed DNA libraries in filamentous fungi (US7794962 B2). 2010 Sep 14.

    Google Scholar 

  • England GR, Kelley A, Mitchinson C; Danisco US Inc., Assignee. Induction of gene expression using a high concentration sugar mixture (United States patent US 7,713,725 B2). 2010 May 11.

    Google Scholar 

  • Eveleigh DE, Montenecourt BS. Increasing yields of extracellular enzymes. Adv Appl Microbiol. 1979;25:57–74. doi:10.1016/S0065-2164(08)70146-1.

    Article  CAS  Google Scholar 

  • Fekete E, Karaffa L, Karimi Aghcheh R, Németh Z, Fekete É, Orosz A, et al. The transcriptome of lae1 mutants of Trichoderma reesei cultivated at constant growth rates reveals new targets of LAE1 function. BMC Genomics. 2014;15(1):447. doi:10.1186/1471-2164-15-447.

    Article  CAS  Google Scholar 

  • Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, et al. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem. 2003;278(34):31988–97. doi:10.1074/jbc.M304750200.

    Article  Google Scholar 

  • Fox EM, Howlett BJ. Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol. 2008;11(6):481–7. doi:10.1016/j.mib.2008.10.007.

    Article  CAS  Google Scholar 

  • Fujii T, Murakami K, Sawayama S. Cellulase hyperproducing mutants derived from the fungus Trichoderma reesei QM9414 produced large amounts of cellulase at the enzymatic and transcriptional levels. Biosci Biotechnol Biochem. 2010;74(2):419–22. doi:10.1271/bbb.90655.

    Article  CAS  Google Scholar 

  • Geysens S, Pakula T, Uusitalo J, Dewerte I, Penttila M, Contreras R. Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl Environ Microbiol. 2005;71(6):2910–24. doi:10.1128/AEM.71.6.2910-2924.2005.

    Article  CAS  Google Scholar 

  • Godtfredsen W, Vangedal S. Trichodermin, a new sesquiterpene antibiotic. Acta Chem Scand. 1965;19(5):1088–102.

    Article  CAS  Google Scholar 

  • Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003;426:895–9.

    Article  CAS  Google Scholar 

  • Goto M. Protein O-Glycosylation in Fungi: Diverse Structures and Multiple Functions. Biosci Biotechnol Biochem. 2007;71(6):1415–27.

    Article  CAS  Google Scholar 

  • Gouka RJ, Punt PJ, Hessing JGM, Hondel CAMJJ. Analysis of heterologous protein production in defined recombinant Aspergillus awamori strains. Appl Environ Microbiol. 1996;62(6):1951–7.

    CAS  Google Scholar 

  • Gouka RJ, Punt PJ, van den Hondel CA. Glucoamylase gene fusions alleviate limitations for protein production in Aspergillus awamori at the transcriptional and (post) translational levels. Appl Environ Microbiol. 1997a;63(2):488–97.

    CAS  Google Scholar 

  • Gouka RJ, Punt PJ, van den Hondel CAMJJ. Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol. 1997b;47:1–11.

    Article  CAS  Google Scholar 

  • Gruber S, Omann M, Rodrìguez CE, Radebner T, Zeilinger S. Generation of Trichoderma atroviride mutants with constitutively activated G protein signaling by using geneticin resistance as selection marker. BMC Res Notes. 2012;5(1):641. doi:10.1186/1756-0500-5-641.

    Article  CAS  Google Scholar 

  • Guangtao Z, Hartl L, Schuster A, Polak S, Schmoll M, Wang T, et al. Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. J Biotechnol. 2009;139(2):146–51. doi:10.1016/j.jbiotec.2008.10.007.

    Article  CAS  Google Scholar 

  • Guillemette T, van Peij NN, Goosen T, Lanthaler K, Robson GD, van den Hondel CA, et al. Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. BMC Genomics. 2007;8(1):158. doi:10.1186/1471-2164-8-158.

    Article  CAS  Google Scholar 

  • Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, et al. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng. 2007;97(5):1028–38. doi:10.1002/bit.21329.

    Article  CAS  Google Scholar 

  • Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, et al. Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact. 2012;11:134.

    Article  CAS  Google Scholar 

  • Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, et al. Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol Biofuels. 2014;7:14.

    Article  CAS  Google Scholar 

  • Hayakawa Y, Ishikawa E, Shoji J, Nakano H, Kitamoto K. Septum-directed secretion in the filamentous fungus Aspergillus oryzae. Mol Microbiol. 2011;81(1):40–55. doi:10.1111/j.1365-2958.2011.07700.x.

    Article  CAS  Google Scholar 

  • Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem. 2004;73:1019–49.

    Article  CAS  Google Scholar 

  • Hemsworth GR, Henrissat B, Davies GJ, Walton PH. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol. 2013;10(2):122–6. doi:10.1038/nchembio.1417.

    Article  CAS  Google Scholar 

  • Hermosa R, Cardoza RE, Rubio MB, Gutiérrez S, Monte E. Secondary metabolism and antimicrobial metabolites of Trichoderma. In: Gupta VK, Schmoll M, Herrera-Estrella A, et al., editors. Biotechnology and biology of Trichoderma. Waltham: Elsevier; 2014. p. 125–37. Chapter 10.

    Chapter  Google Scholar 

  • Herpoël-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S, et al. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels. 2008;1(1):18. doi:10.1186/1754-6834-1-18.

    Article  CAS  Google Scholar 

  • Hjortkjaer RK, Bille-Hansen V, Hazelden KP, McConville M, McGregor DB, Cuthbert JA, et al. Safety evaluation of Celluclast, an acid cellulase derived from Trichoderma reesei. Food Chem Toxicol. 1986;24(1):55–63.

    Article  CAS  Google Scholar 

  • Holkeri H, Makarow M. Different degradation pathways for heterologous glycoproteins in yeast. FEBS Lett. 1998;429:162–6.

    Article  CAS  Google Scholar 

  • Ilmen M, Onnela ML, Klemsdal S, Keränen S, Penttilä M. Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei. Mol Gen Genet. 1996a;253:303–14.

    CAS  Google Scholar 

  • Ilmen M, Thrane C, Penttilä M. The glucose repressor gene cre1 of Trichoderma: Isolation and expression of a full-length and truncated mutant form. Mol Gen Genet. 1996b;251:451–60.

    CAS  Google Scholar 

  • Ivanova C, Bååth JA, Seiboth B, Kubicek CP. Systems analysis of lactose metabolism in Trichoderma reesei identifies a lactose permease that is essential for cellulase induction. PLoS One. 2013;8(5), e62631. doi:10.1371/journal.pone.0062631.

    Article  CAS  Google Scholar 

  • Joergensen M, Skovlund D, Johannesen P, Mortensen UH. A novel platform for heterologous gene expression in Trichoderma reesei (Teleomorph Hypocrea jecorina). Microb Cell Fact. 2014;13(1):33. doi:10.1186/1475-2859-13-33.

    Article  CAS  Google Scholar 

  • Joutsjoki VV, Kuittinen M, Torkkeli TK, Suominen PL. Secretion of the Hormoconis resinae glucoamylase P enzyme from Trichoderma reesei directed by the natural and the cbh1 gene secretion signal. FEMS Microbiol Lett. 1993;112(3):281–6.

    Article  CAS  Google Scholar 

  • Karhunen T, Mantyla A, Nevalainen KM, Suominen PL. High frequency one-step gene replacement in Trichoderma reesei. I. Endoglucanase I overproduction. Mol Gen Genet. 1993;241(5–6):515–22.

    Article  CAS  Google Scholar 

  • Kawamori M, Morikawa Y, Shinsha Y, Takayama K, Takasawa S. Preparation of mutants resistant to catabolite repression of Trichoderma reesei. Agric Biol Chem. 1985;49(10):2875–9.

    CAS  Google Scholar 

  • Kiiskinen L, Kruus K, Bailey M, Ylösmäki E, Siika-Aho M, Saloheimo M. Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. Microbiology. 2004;150(Pt 9):3065–74. doi:10.1099/mic.0.27147-0.

    Article  CAS  Google Scholar 

  • Kim TH, Kim TH. Overview of technical barriers and implementation of cellulosic ethanol in the U.S. Energy. 2014;66:13–9. doi:10.1016/j.energy.2013.08.008.

    Article  CAS  Google Scholar 

  • Koda A, Minetoki T, Ozeki K, Hirotsune M. Translation efficiency mediated by the 5′ untranslated region greatly affects protein production in Aspergillus oryzae. Appl Microbiol Biotechnol. 2004;66(3):291–6. doi:10.1007/s00253-004-1681-8.

    Article  CAS  Google Scholar 

  • Koda A, Bogaki T, Minetoki T, Hirotsune M. 5′ Untranslated region of the Hsp12 gene contributes to efficient translation in Aspergillus oryzae. Appl Microbiol Biotechnol. 2006;70(3):333.

    Article  CAS  Google Scholar 

  • Koike H, Aerts A, LaButti K, Grigoriev IV, Baker SE. Comparative genomics analysis of Trichoderma reesei strains. Ind Biotechnol. 2013;9(6):352–67. doi:10.1089/ind.2013.0015.

    Article  CAS  Google Scholar 

  • Komon-Zelazowska M, Neuhof T, Dieckmann R, von Dohren H, Herrera-Estrella A, Kubicek CP, et al. Formation of atroviridin by Hypocrea atroviridis is conidiation associated and positively regulated by blue light and the G protein GNA3. Eukaryot Cell. 2007;6(12):2332–42. doi:10.1128/EC.00143-07.

    Article  CAS  Google Scholar 

  • Kruszewska JS, Butterweck AH, Kurzatkowski W, Migdalski A, Kubicek CP, Palamarczyk G. Overexpression of the Saccharomyces cerevisiae mannosylphosphodolichol synthase-encoding gene in Trichoderma reesei results in an increased level of protein secretion and abnormal cell ultrastructure. Appl Environ Microbiol. 1999;65(6):2382–7.

    CAS  Google Scholar 

  • Kubicek CP. Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol. 2013;163(2):133–42. doi:10.1016/j.jbiotec.2012.05.020.

    Article  CAS  Google Scholar 

  • Kubicek CP, Panda T, Schreferl-Kunar G, Gruber F, Messner R. O-linked but not N-linked glycosylation is necessary for the secretion of endoglucanase I and II by Trichoderma reesei. Can J Microbiol. 1987;33:698–703.

    Article  CAS  Google Scholar 

  • Kubicek CP, Komon-Zelazowska M, Sándor E, Druzhinina IS. Facts and challenges in the understanding of the biosynthesis of peptaibols by Trichoderma. Chem Biodivers. 2007;4:1068–82.

    Article  CAS  Google Scholar 

  • Kubicek CP, Komon-Zelazowska M, Druzhinina IS. Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity. J Zhejiang Univ Sci B. 2008;9(10):753–63. doi:10.1631/jzus.B0860015.

    Article  Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011;12(4):R40. doi:10.1186/gb-2011-12-4-r40.

    Article  CAS  Google Scholar 

  • Kubicek CP, Linke R, Seiboth B, Haarmann T, Lorenz P; AB Enzymes GmbH, assignee. Genes/Genetic Elements associated with mating impairment in Trichoderma reesei QM6a and its derivatives and process for their identification (WO2014/102241 A1). 2014 July 3.

    Google Scholar 

  • Kubodera T, Yamashita N, Nishimura A. Transformation of Aspergillus sp. and Trichoderma reesei using the pyrithiamine resistance gene (ptrA) of Aspergillus oryzae. Biosci Biotechnol Biochem. 2002;66(2):404–6.

    Article  CAS  Google Scholar 

  • Kuhls K, Lieckfeldt E, Samuels GJ, Kovacs W, Meyer W, Petrini O, et al. Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci U S A. 1996;93(15):7755–60.

    Article  CAS  Google Scholar 

  • Kuhls K, Lieckfeldt E, Börner T, Gueho E. Molecular reidentification of human pathogenic Trichoderma isolates as Trichoderma longibranchiatum and Trichoderma citrinoviride. Med Mycol. 1999;37:25–33.

    Article  CAS  Google Scholar 

  • Kurzatkowski W, Törrönen A, Filipek J, Mach RL, Herzog P, Sowka S, et al. Glucose-induced secretion of Trichoderma reesei xylanases. Appl Environ Microbiol. 1996;62(8):2859–65.

    CAS  Google Scholar 

  • Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, et al. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106(38):16151–6. doi:10.1073/pnas.0905848106.

    Article  Google Scholar 

  • Li J, Wang J, Wang S, Xing M, Yu S, Liu G. Achieving efficient protein expression in Trichoderma reesei by using strong constitutive promoters. Microb Cell Fact. 2012;11:84. doi:10.1186/1475-2859-11-84.

    Article  CAS  Google Scholar 

  • Lichius A, Bidard F, Buchholz F, Le Crom S, Martin J, Schackwitz W, et al. Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype. BMC Genomics. 2015;16(1):962. doi:10.1186/s12864-015-1526-0.

    Article  Google Scholar 

  • Liu L, Liu J, Qiu RX, Zhu XG, Dong ZY, Tang GM. Improving heterologous gene expression in Aspergillus niger by introducing multiple copies of protein-binding sequence containing CCAAT to the promoter. Lett Appl Microbiol. 2003;36(6):358–61. doi:10.1046/j.1472-765X.2003.01321.x.

    Article  CAS  Google Scholar 

  • Liu T, Wang T, Li X, Liu X. Improved heterologous gene expression in Trichoderma reesei by cellobiohydrolase I gene (cbh1) promoter optimization. Acta Biochim Biophys Sin (Shanghai). 2008;40(2):158–65. doi:10.1111/j.1745-7270.2008.00388.x.

    Article  CAS  Google Scholar 

  • Löbel D, Schwarz T, Paladino S, Linger A, Leiss O, Pfeifer A, et al. Overexpression of an E. coli phytase mutant in Trichoderma reesei and characterization of the enzyme [abstract/poster]. 9th European Conference on Fungal Genetics, Edinburgh, England. 5–8th April 2008.

    Google Scholar 

  • Mach RL, Schindler M, Kubicek CP. Transformation of Trichoderma reesei based on hygromycin B resistance using homologous expression signals. Curr Genet. 1994;25(6):567–70. doi:10.1007/BF00351679.

    Article  CAS  Google Scholar 

  • Mandels M, Reese ET. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol. 1957;73(2):269–78.

    CAS  Google Scholar 

  • Mäntylä AL, Rossi KH, Vanhanen SA, Penttilä ME, Suominen PL, Nevalainen KM. Electrophoretic karyotyping of wild-type and mutant Trichoderma longibrachiatum (reesei) strains. Curr Genet. 1992;21(6):471–7. doi:10.1007/BF00351657.

    Article  Google Scholar 

  • Mäntylä A, Paloheimo M, Suominen P. Industrial mutants and recombinant strain of Trichoderma reesei. In: Kubicek CP, Harman GE, Ondik KL, editors. Trichoderma and Gliocladium, Enzymes, biological control, and commercial applications. London: Taylor & Francis; 1998. p. 291–309. Chapter 13.

    Google Scholar 

  • Margolles-Clark E, Hayes CK, Harman GE, Penttilä M. Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei. Appl Environ Microbiol. 1996;62(6):2145–51.

    CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol. 2008;26(5):553–60. doi:10.1038/nbt1403.

    Article  CAS  Google Scholar 

  • Marx I, van Wyk N, Smit S, Jacobson D, Viljoen-Bloom M, Volschenk H, et al. Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut-C30 during solid-state fermentation on sugarcane bagasse. Biotechnol Biofuels. 2013;6(1):172–84. doi:10.1186/1754-6834-6-172.

    Article  CAS  Google Scholar 

  • Maurer K, Elleuche S, Antranikian G. Enzyme. In: Sahm H, Antranikian G, Stahmann K, et al., editors. Industrielle mikrobiologie. Berlin: Springer; 2013. p. 205–24.

    Chapter  Google Scholar 

  • McFarland KC, Ding H, Teter S, Vlasenko E, Xu F, Cherry J. Development of improved cellulase mixtures in a single production organism. Industrial application of enzymes on carbohydrate-based material. In: Eggleston G, Vercellotti JR, editors. Industrial applications of enzymes based on carbohydrate-based material. Washington, DC: American Chemical Society; 2007. p. 19–31.

    Chapter  Google Scholar 

  • Merino ST, Cherry J. Progress and challenges in enzyme development for biomass utilization. In: Olsson L, Ahring BK, editors. Biofuels, Advances in biochemical engineering/biotechnology, vol. 108. Berlin: Springer; 2007. p. 95–120.

    Chapter  Google Scholar 

  • Metzenberg RL, Glass NL. Mating type and mating strategies in Neurospora. Bioessays. 1990;12(2):53–9. doi:10.1002/bies.950120202.

    Article  CAS  Google Scholar 

  • Meusser B, Hirsch C, Jarosch E, Sommer T, Meusser B, Hirsch C, et al. ERAD: the long road to destruction. Nat Cell Biol. 2005;7(8):766–72. doi:10.1038/ncb0805-766.

    Article  CAS  Google Scholar 

  • Minetoki T, Kumagai C, Gomi K, Kitamoto K, Takahashi K. Improvement of promoter activity by the introduction of multiple copies of the conserved region III sequence, involved in the efficient expression of Aspergillus oryzae amylase-encoding genes. Appl Microbiol Biotechnol. 1998;50(4):459–67. doi:10.1007/s002530051321.

    Article  CAS  Google Scholar 

  • Mitchinson C. Improved cellulases for the biorefinery. Stanford GCEP biomass energy workshop. 2004. http://gcep.stanford.edu/pdfs/energy_workshops_04_04/biomass_mitchinson.pdf. Accessed 2014 Jun 26.

  • Miyauchi S, Te’o VS, Bergquist PL, Nevalainen KMH. Expression of a bacterial xylanase in Trichoderma reesei under the egl2 and cbh2 glycosyl hydrolase gene promoters. N Biotechnol. 2013;30(5):523–30. doi:10.1016/j.nbt.2013.02.005.

    Article  CAS  Google Scholar 

  • Miyauchi S, Te’o VSJ, Nevalainen KMH, Bergquist PL. Simultaneous expression of the bacterial Dictyoglomus thermophilum xynB gene under three different Trichoderma reesei promoters. N Biotechnol. 2014;31(1):98–103. doi:10.1016/j.nbt.2013.08.002.

    Article  CAS  Google Scholar 

  • Molinari M. N-glycan structure dictates extension of protein folding or onset of disposal. Nat Chem Biol. 2007;3(6):313–20. doi:10.1038/nchembio880.

    Article  CAS  Google Scholar 

  • Montenecourt BS, Kelleher TJ, Eveleigh DE, Pettersson LG. Biochemical nature of cellulases from mutants of Trichoderma reesei. In: Biotechnology and bioengineering symposium, 10. New York: Wiley; 1980. p. 15–26.

    Google Scholar 

  • Moralejo FJ, Watson AJ, Jeenes DJ, Archer DB, Martín JF. A defined level of protein disulfide isomerase expression is required for optimal secretion of thaumatin by Aspegillus awamori. Mol Genet Genomics. 2001;266(2):246–53. doi:10.1007/s004380100550.

    Article  CAS  Google Scholar 

  • Mordcawa Y, Kawamori M, Ado Y, Shinsha Y, Oda F, Takasawa S. Improvement of cellulase production in Trichoderma reesei. Agric Biol Chem. 1985;49(6):1869–71. doi:10.1271/bbb1961.49.1869.

    Article  Google Scholar 

  • Mueller C, McIntyre M, Hansen K, Nielsen J. Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Appl Environ Microbiol. 2002;68(4):1827–36. doi:10.1128/AEM.68.4.1827-1836.2002.

    Article  CAS  Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM. Secondary metabolism in Trichoderma—a genomic perspective. Microbiology. 2012;158(Pt 1):35–45. doi:10.1099/mic.0.053629-0.

    Article  CAS  Google Scholar 

  • Nakari-Setälä T, Penttilä M. Production of Trichoderma reesei cellulases on glucose-containing media. Appl Environ Microbiol. 1995;61(10):3650–5.

    Google Scholar 

  • Nakari-Setälä T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M. Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol. 2009;75(14):4853–60. doi:10.1128/AEM.00282-09.

    Article  CAS  Google Scholar 

  • Neustroev KN, Golubev AM, Firsov LM, Ibatullin FM, Protasevich II, Makarov AA. Effect of modification of carbohydrate component on properties of glucoamylase. FEBS Lett. 1993;316(2):157–60. doi:10.1016/0014-5793(93)81206-F.

    Article  CAS  Google Scholar 

  • Nevalainen H, Suominen P, Taimisto K. On the safety of Trichoderma reesei. J Biotechnol. 1994;37(3):193–200. doi:10.1016/0168-1656(94)90126-0.

    Article  CAS  Google Scholar 

  • Nguyen KQ, Winter B; AB Enzymes GmbH, assignee. Vector constructs and methods of expressing and secreting polypeptides in filamentous fungi using a self-processing 2A cleavage site (WO2008/012028 A1). 2008 Jan 31.

    Google Scholar 

  • Nielsen PH, Oxenboll KM, Wenzel H. Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by Novozymes A/S. Int J Life Cycle Assess. 2007;12(6):432–8. doi:10.1065/lca2006.08.265.1.

    Article  CAS  Google Scholar 

  • Novozymes A/S. The Novozymes report 2013. 2013. http://www.novozymes.com/en/investor/financial-reports/Documents/The-Novozymes-Report-2013.pdf. Accessed 2014 Jun 26.

  • Nykänen M, Saarelainen R, Raudaskoski M, Nevalainen K, Mikkonen A. Expression and secretion of barley cysteine endopeptidase B and cellobiohydrolase I in Trichoderma reesei. Appl Environ Microbiol. 1997;63(12):4929–37.

    Google Scholar 

  • Østergaard LH, Olsen HS. Industrial applications of fungal enzymes. In: Hofrichter M, editor. The Mycota. 2nd ed. Berlin: Springer; 2011. p. 269–90.

    Google Scholar 

  • Outtrup H, Jorgensen ST. The importance of Bacillus species in the production of industrial enzymes. In: Berkeley RCW, editor. Applications and systematics of bacillus and relatives. Malden: Blackwell Science; 2002. p. 206–18.

    Chapter  Google Scholar 

  • Pakula TM, Laxell M, Huuskonen A, Uusitalo J, Saloheimo M, Penttilä M. The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J Biol Chem. 2003;278(45):45011–20. doi:10.1074/jbc.M302372200.

    Article  CAS  Google Scholar 

  • Paloheimo M. Effects of intron deletions on production of a heterologous protease in Trichoderma reesei [poster]. 27th Fungal Genetics Conference, Asilomar, CA. 12–17th March 2013.

    Google Scholar 

  • Paloheimo M, Mäntylä A, Kallio J, Suominen P. High-yield production of a bacterial xylanase in the filamentous fungus Trichoderma reesei requires a carrier polypeptide with an intact domain structure. Appl Environ Microbiol. 2003;69(12):7073–82. doi:10.1128/AEM.69.12.7073-7082.2003.

    Article  CAS  Google Scholar 

  • Paloheimo M, Mäntylä A, Kallio J, Puranen T, Suominen P. Increased production of xylanase by expression of a truncated version of the xyn11A gene from Nonomuraea flexuosa in Trichoderma reesei. Appl Environ Microbiol. 2007;73(10):3215–24. doi:10.1128/AEM.02967-06.

    Article  CAS  Google Scholar 

  • Paloheimo M, Piironen J, Vehmaanperä J. Xylanases and cellulases as feed additives. In: Bedford MR, Partridge GG, editors. Enzymes in farm animal nutrition. 2nd ed. Oxfordshire: CABI; 2011. p. 12–53.

    Google Scholar 

  • Parra G, Bradnam K, Rose AB, Korf I. Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic Acids Res. 2011;39(13):5328–37. doi:10.1093/nar/gkr043.

    Article  CAS  Google Scholar 

  • Patron NJ, Waller RF, Cozijnsen AJ, Straney DC, Gardiner DM, Nierman WC, et al. Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evol Biol. 2007;7(1):174. doi:10.1186/1471-2148-7-174.

    Article  CAS  Google Scholar 

  • Penttilä ME. Heterologous protein production in Trichoderma. In: Kubicek CP, Harman GE, Ondik KL, editors. Trichoderma and gliocladium, Enzymes, biological control, and commercial applications, vol. 2. London: Taylor & Francis; 1998. p. 365–82.

    Google Scholar 

  • Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene. 1987;61(2):155–64. doi:10.1016/0378-1119(87)90110-7.

    Article  Google Scholar 

  • Peterson R, Nevalainen H. Trichoderma reesei RUT-C30—thirty years of strain improvement. Microbiology. 2012;158(Pt 1):58–68. doi:10.1099/mic.0.054031-0.

    Article  CAS  Google Scholar 

  • Platt A, Langdon T, Arst HN, Kirk D, Tollervey D, Sanchez JM, et al. Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3′ untranslated region of its mRNA. EMBO J. 1996;15(11):2791–801.

    CAS  Google Scholar 

  • Porciuncula JO, Furukawa T, Mori K, Shida Y, Hirakawa H, Tashiro K, et al. Single nucleotide polymorphism analysis of a Trichoderma reesei hyper-cellulolytic mutant developed in Japan. Biosci Biotechnol Biochem. 2013;77(3):534–43. doi:10.1271/bbb.120794.

    Article  CAS  Google Scholar 

  • Portnoy T, Margeot A, Seidl-Seiboth V, Le Crom S, Ben Chaabane F, Linke R, et al. Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulase. Eukaryot Cell. 2011;10(2):262–71. doi:10.1128/EC.00208-10.

    Article  CAS  Google Scholar 

  • Pourquie J, Warzywoda M. Cellulase production by Trichoderma reesei. In: Saddler JN, editor. Bioconversion of forest and agricultural plant residues, Biotechnology in agriculture, vol. 9. Wallingford: CAB International; 1993. p. 107–16.

    Google Scholar 

  • Pourquie J, Warzywoda M, Chevron F, Thery M, Lonchamp D, Vandecasteele JP. Scale up of cellulase production and utilization. In: Aubert J, Beguin P, Millet J, editors. Biochemistry and genetics of cellulose degradation. London: Academic; 1988. p. 71–86.

    Google Scholar 

  • Providenti MA, Mautner SI, Chaudhry O, Bombardier M, Scroggins R, Gregorich E, et al. Determining the environmental fate of a filamentous fungus, Trichoderma reesei, in laboratory-contained intact soil-core microcosms using competitive PCR and viability plating. Can J Microbiol. 2004;50(8):623–31. doi:10.1139/w04-053.

    Article  CAS  Google Scholar 

  • Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol. 2002;20(5):200–6. doi:10.1016/S0167-7799(02)01933-9.

    Article  CAS  Google Scholar 

  • Punt PJ, Schuren FHJ, Lehmbeck J, Christensen T, Hjort C, van den Hondel CAMJJ. Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol. 2008;45(12):1591–9. doi:10.1016/j.fgb.2008.09.007.

    Article  CAS  Google Scholar 

  • Puranen T, Alapuranen M, Vehmaanperä J. Trichoderma enzymes for textile industries. In: Gupta VK, Schmoll M, Herrera-Estrella A, et al., editors. Biotechnology and biology of Trichoderma. Waltham: Elsevier; 2014. p. 351–62.

    Chapter  Google Scholar 

  • Rauscher R, Würleitner E, Wacenovsky C, Aro N, Stricker AR, Zeilinger S, et al. Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. Eukaryot Cell. 2006;5(3):447–56. doi:10.1128/EC.5.3.447-456.2006.

    Article  CAS  Google Scholar 

  • Read ND. Exocytosis and growth do not occur only at hyphal tips. Mol Microbiol. 2011;81(1):4–7. doi:10.1111/j.1365-2958.2011.07702.x.

    Article  CAS  Google Scholar 

  • Reese ET. History of the cellulase program at the U.S. army Natick Development Center. In: Gaden E, Mandels M, Reese E, et al., editors. Biotechnology and bioengineering symposium, vol. 6. New York: Wiley; 1975. p. 9–20.

    Google Scholar 

  • Ries L, Pullan ST, Delmas S, Malla S, Blythe MJ, Archer DB. Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC Genomics. 2013;14:541. doi:10.1186/1471-2164-14-541.

    Article  CAS  Google Scholar 

  • Rose AB. Intron-mediated regulation of gene expression. Curr Top Microbiol Immunol. 2008;326:277–90.

    CAS  Google Scholar 

  • Rowlands RT. Industrial strain improvement: Mutagenesis and random screening procedures. Enzyme Microb Technol. 1984;6(1):3–10. doi:10.1016/0141-0229(84)90070-x.

    Article  CAS  Google Scholar 

  • Rutkowski D, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol. 2004;14(1):20–8. doi:10.1016/j.tcb.2003.11.001.

    Article  CAS  Google Scholar 

  • Saloheimo M, Pakula TM. The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology. 2012;158(Pt 1):46–57. doi:10.1099/mic.0.053132-0.

    Article  CAS  Google Scholar 

  • Saloheimo M, Valkonen M, Penttilä M. Activation mechanisms of the HAC1-mediated unfolded protein response in filamentous fungi. Mol Microbiol. 2003;47(4):1149–61. doi:10.1046/j.1365-2958.2003.03363.x.

    Article  CAS  Google Scholar 

  • Sarrouh B, Santos TM, Miyoshi A, Dias R, Azevedo V. Up-to-date insight on industrial enzymes applications and global market. J Bioprocess Biotechniq. 2012;S4:2.

    Google Scholar 

  • Schmoll M, Seibel C, Kotlowski C, Wöllert Genannt Vendt F, Liebmann B, Kubicek CP. Recombinant production of an Aspergillus nidulans class I hydrophobin (DewA) in Hypocrea jecorina (Trichoderma reesei) is promoter-dependent. Appl Microbiol Biotechnol. 2010;88(1):95–103. doi:10.1007/s00253-010-2710-4.

    Article  CAS  Google Scholar 

  • Schuster A, Bruno KS, Collett JR, Baker SE, Seiboth B, Kubicek CP, et al. A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnol Biofuels. 2012;5(1):1. doi:10.1186/1754-6834-5-1.

    Article  CAS  Google Scholar 

  • Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG, et al. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol. 2012;84(6):1150–64. doi:10.1111/j.1365-2958.2012.08083.x.

    Article  CAS  Google Scholar 

  • Seidl V, Seiboth B. Trichoderma reesei: Genetic approaches to improving strain efficiency. Biofuels. 2010;1(2):343–54. doi:10.4155/bfs.10.1.

    Article  CAS  Google Scholar 

  • Seidl V, Gamauf C, Druzhinina IS, Seiboth B, Hartl L, Kubicek CP. The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics. 2008;9:327. doi:10.1186/1471-2164-9-327.

    Article  CAS  Google Scholar 

  • Seidl V, Seibel C, Kubicek CP, Schmoll M. Sexual development in the industrial workhorse Trichoderma reesei. Proc Natl Acad Sci U S A. 2009;106(33):13909–14. doi:10.1073/pnas.0904936106.

    Article  CAS  Google Scholar 

  • Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo K, et al. Molecular cloning of exo–cellobiohydrolase I derived from Trichoderma reesei strain L27. Nat Biotechnol. 1983;1(8):691–6. doi:10.1038/nbt1083-691.

    Article  CAS  Google Scholar 

  • Shoji J, Arioka M, Kitamoto K. Dissecting cellular components of the secretory pathway in filamentous fungi: insights into their application for protein production. Biotechnol Lett. 2008;30(1):7–14. doi:10.1007/s10529-007-9516-1.

    Article  CAS  Google Scholar 

  • Spencer JA, Jeenes DJ, MacKenzie DA, Haynie DT, Archer DB. Determinants of the fidelity of processing glucoamylase-lysozyme fusions by Aspergillus niger. Eur J Biochem. 1998;258(1):107–12. doi:10.1046/j.1432-1327.1998.2580107.x.

    Article  CAS  Google Scholar 

  • Stals I, Sandra K, Devreese B, van Beeumen J, Claeyssens M. Factors influencing glycosylation of Trichoderma reesei cellulases. II. N-glycosylation of Cel7A core protein isolated from different strains. Glycobiology. 2004a;14(8):725–37. doi:10.1093/glycob/cwh081.

    Article  CAS  Google Scholar 

  • Stals I, Sandra K, Geysens S, Contreras R, van Beeumen J, Claeyssens M. Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology. 2004b;14(8):713–24. doi:10.1093/glycob/cwh080.

    Article  CAS  Google Scholar 

  • Steiger MG, Vitikainen M, Uskonen P, Brunner K, Adam G, Pakula T, et al. Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl Environ Microbiol. 2011;77(1):114–21. doi:10.1128/AEM.02100-10.

    Article  CAS  Google Scholar 

  • Tamayo-Ramos JA, Barends S, de Lange D, de Jel A, Verhaert R, de Graaff L. Enhanced production of Aspergillus niger laccase-like multicopper oxidases through mRNA optimization of the glucoamylase expression system. Biotechnol Bioeng. 2013;110(2):543–51. doi:10.1002/bit.24723.

    Article  CAS  Google Scholar 

  • Taylor JW, Jacobson DJ, Fisher MC. The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol. 1999;37(1):197–246. doi:10.1146/annurev.phyto.37.1.197.

    Article  CAS  Google Scholar 

  • Te’o VS, Cziferszky AE, Bergquist PL, Nevalainen KM. Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei. FEMS Microbiol Lett. 2000;190(1):13–9. doi:10.1111/j.1574-6968.2000.tb09255.x.

    Article  Google Scholar 

  • Tholudur A, Ramirez WF, McMillan JD. Mathematical modeling and optimization of cellulase protein production using Trichoderma reesei RL-P37. Biotechnol Bioeng. 1999;66(1):1–16. doi:10.1002/(SICI)1097-0290(1999)66:1<1:AID-BIT1>3.0.CO;2-K.

    Article  CAS  Google Scholar 

  • Throndset W, Kim S, Bower B, Lantz S, Kelemen B, Pepsin M, et al. Flow cytometric sorting of the filamentous fungus Trichoderma reesei for improved strains. Enzyme Microb Technol. 2010;47(7):335–41. doi:10.1016/j.enzmictec.2010.09.003.

    Article  CAS  Google Scholar 

  • Tolan JS, Foody B. Cellulase from submerged fermentation. In: Tsao GT, editor. Recent progress in bioconversion of lignocellulosics. Berlin: Springer; 1999. p. 41–67.

    Chapter  Google Scholar 

  • Toyama H, Yamagishi N, Toyama N. Rapid selection system of strains with higher avicel degrading ability in a cellulolytic fungus, Trichoderma. Appl Biochem Biotechnol. 2002;98–100(1–9):257–63. doi:10.1385/ABAB:98-100:1-9:257.

    Article  Google Scholar 

  • Trotta E. Selection on codon bias in yeast: a transcriptional hypothesis. Nucleic Acids Res. 2013;41(20):9382–95. doi:10.1093/nar/gkt740.

    Article  CAS  Google Scholar 

  • Uzbas F, Sezerman U, Hartl L, Kubicek CP, Seiboth B. A homologous production system for Trichoderma reesei secreted proteins in a cellulase-free background. Appl Microbiol Biotechnol. 2012;93(4):1601–8. doi:10.1007/s00253-011-3674-8.

    Article  CAS  Google Scholar 

  • Vaheri M, Leisola M, Kauppinen V. Transglycosylation products of cellulase system of Trichoderma reesei. Biotechnol Lett. 1979;1(1):41–6. doi:10.1007/bf01395789.

    Article  CAS  Google Scholar 

  • Valkonen M, Penttila M, Saloheimo M. Effects of inactivation and constitutive expression of the unfolded—protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 2003;69(4):2065–72. doi:10.1128/AEM.69.4.2065-2072.2003.

    Article  CAS  Google Scholar 

  • Valkonen M, Penttilä M, Saloheimo M. The ire1 and ptc2 genes involved in the unfolded protein response pathway in the filamentous fungus Trichoderma reesei. Mol Genet Genomics. 2004;272(4):443–51. doi:10.1007/s00438-004-1070-0.

    Article  CAS  Google Scholar 

  • Valkonen M, Kalkman ER, Saloheimo M, Penttilä M, Read ND, Duncan RR. Spatially segregated SNARE protein interactions in living fungal cells. J Biol Chem. 2007;282(31):22775–85. doi:10.1074/jbc.M700916200.

    Article  CAS  Google Scholar 

  • van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol. 2005;40(4):191–228. doi:10.1080/10409230591008161.

    Article  CAS  Google Scholar 

  • Vanhanen S, Saloheimo A, Ilmén M, Knowles J, Penttilä M. Promoter structure and expression of the 3-phosphoglycerate kinase-encoding gene (pgk1) of Trichoderma reesei. Gene. 1991;106(1):129–33. doi:10.1016/0378-1119(91)90577-X.

    Article  CAS  Google Scholar 

  • Vehmaanperä J, Puranen T, Valtakari L, Kallio J, Alapuranen M, Paloheimo M, et al.; AB Enzymes Oy, assignee. Improved cellulases (WO2006117432A1). 2006 Nov 9.

    Google Scholar 

  • Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-Aho M. Thermostable enzymes in lignocellulose hydrolysis. In: Olsson L, Ahring BK, editors. Biofuels, Advances in biochemical engineering/biotechnology, vol. 108. Berlin: Springer; 2007. p. 121–45.

    Chapter  Google Scholar 

  • Viikari L, Vehmaanperä J, Koivula A. Lignocellulosic ethanol: From science to industry. Biomass Bioenergy. 2012;46:13–24. doi:10.1016/j.biombioe.2012.05.008.

    Article  CAS  Google Scholar 

  • Visser H, Joosten V, Punt PJ, Gusakov AV, Olson PT, Joosten R, et al. Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1. Ind Biotechnol. 2011;7(3):214–23. doi:10.1089/ind.2011.7.214.

    Article  CAS  Google Scholar 

  • Vitikainen M, Arvas M, Pakula T, Oja M, Penttilä M, Saloheimo M. Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties. BMC Genomics. 2010;11:441. doi:10.1186/1471-2164-11-441.

    Article  CAS  Google Scholar 

  • Wang C, Eufemi M, Turano C, Giartosio A. Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry. 1996;35(23):7299–307. doi:10.1021/bi9517704.

    Article  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. doi:10.1038/nrg2484.

    Article  CAS  Google Scholar 

  • Wang S, Liu G, Wang J, Yu J, Huang B, Xing M. Enhancing cellulase production in Trichoderma reesei RUT C30 through combined manipulation of activating and repressing genes. J Ind Microbiol Biotechnol. 2013;40(6):633–41. doi:10.1007/s10295-013-1253-y.

    Article  CAS  Google Scholar 

  • Watts R, Dahiya J, Chaudhary K, Tauro P. Isolation and characterization of a new antifungal metabolite of Trichoderma reesei. Plant Soil. 1988;107(1):81–4. doi:10.1007/BF02371547.

    Article  CAS  Google Scholar 

  • Wiebe MG. Stable production of recombinant proteins in filamentous fungi—problems and improvements. Mycologist. 1999;17(3):140–4. doi:10.1017/s0269915x03003033.

    Article  Google Scholar 

  • Wösten HAB, Moukha SM, Sietsma JH, Wessels JGH. Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol. 1991;137(8):2017–23. doi:10.1099/00221287-137-8-2017.

    Article  Google Scholar 

  • Yoon J, Aishan T, Maruyama J, Kitamoto K. Enhanced production and secretion of heterologous proteins by the filamentous fungus Aspergillus oryzae via disruption of vacuolar protein sorting receptor gene Aovps10. Appl Environ Microbiol. 2010;76(17):5718–27. doi:10.1128/AEM.03087-09.

    Article  CAS  Google Scholar 

  • Zeilinger S, Ebner A, Marosits T, Mach R, Kubicek CP. The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol Genet Genomics. 2001;266(1):56–63. doi:10.1007/s004380100518.

    Article  CAS  Google Scholar 

  • Zhang PY, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv. 2006;24(5):452–81. doi:10.1016/j.biotechadv.2006.03.003.

    Article  CAS  Google Scholar 

  • Zhang W, Kou Y, Xu J, Cao Y, Zhao G, Shao J, et al. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. J Biol Chem. 2013;288(46):32861–72. doi:10.1074/jbc.M113.505826.

    Article  CAS  Google Scholar 

  • Zou G, Shi S, Jiang Y, van den Brink J, de Vries RP, Chen L, et al. Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering. Microb Cell Fact. 2012;11:21. doi:10.1186/1475-2859-11-21.

    Article  CAS  Google Scholar 

  • Zur H, Tuller T. Strong association between mRNA folding strength and protein abundance in S. cerevisiae. EMBO Rep. 2012;13(3):272–7. doi:10.1038/embor.2011.262.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marja Paloheimo M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paloheimo, M., Haarmann, T., Mäkinen, S., Vehmaanperä, J. (2016). Production of Industrial Enzymes in Trichoderma reesei . In: Schmoll, M., Dattenböck, C. (eds) Gene Expression Systems in Fungi: Advancements and Applications. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27951-0_2

Download citation

Publish with us

Policies and ethics