Skip to main content

Sexual Development in Fungi and Its Uses in Gene Expression Systems

  • Chapter
  • First Online:
Gene Expression Systems in Fungi: Advancements and Applications

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The sexual cycle offers valuable opportunities to study and modify fungal gene expression. However, exploitation of sexual reproduction has often been overlooked because many fungal species of importance in biotechnology, medicine and agriculture lack a sexual cycle, and therefore gene manipulation techniques have been used in preference to sex. It has been discovered in the last decade though that many supposedly asexual species have the potential for sexual development if the correct environmental conditions and mating partners can be identified. This has led to renewed interest in experimental exploitation of fungal sexual cycles. An overview of fungal sexual reproduction is first provided. We then describe a series of ways in which fungal sexual cycles can be used to study and modify gene expression systems. These include the use of sexual reproduction in determining the genetic basis of traits of interest, use in identification of candidate genes, use in industrial strain development, and verification of gene function in deletion and complementation studies. Finally the use of mating-type (MAT) genes to enhance expression of desirable traits relating to primary and secondary metabolism is discussed, given recent finding about their wide-ranging transcriptional activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becker K, Beer C, Freitag M, Kück U. Genome-wide identification of target genes of a mating-type α-domain transcription factor reveals functions beyond sexual development. Mol Microbiol. 2015;96:1002–22. doi:10.1111/mmi.12987.

    Article  CAS  Google Scholar 

  • Böhm J, Hoff B, O’Gorman CM, Wolfers S, Klix V, Binger D, et al. Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci U S A. 2013;110:1476–81. doi:10.1073/pnas.1217943110.

    Article  Google Scholar 

  • Böhm J, Dahlmann TA, Gümüser H, Kück U. A MAT1-2 wild- type strain from Penicillium chrysogenum: functional mating- type locus characterization, genome sequencing and mating with an industrial penicillin-producing strain. Mol Microbiol. 2015;95:859–74. doi:10.1111/mmi.12909.

    Article  Google Scholar 

  • Burdock GA, Flamm WG. Safety assessment of the mycotoxin cyclopiazonic acid. Int J Toxicol. 2000;19:195–218. doi:10.1080/10915810050074964.

    Article  CAS  Google Scholar 

  • Cavindera B, Trail F. Role of Fig1, a component of the low-affinity calcium uptake system, in growth and sexual development of filamentous fungi. Eukaryot Cell. 2012;11:978–88. doi:10.1128/EC.00007-12.

    Google Scholar 

  • Dahlmann TA, Böhm J, Becker K, Kück U. Sexual recombination as a tool for engineering industrial Penicillium chrysogenum strains. Curr Genet. 2015;61:679–83. doi:10.1007/s00294-015-0497-7.

    Google Scholar 

  • Debuchy R, Berteaux-Lecellier V, Silar P. Mating systems and sexual morphogenesis in Ascomycetes. In: Borkovitch K, Ebbole D, editors. Cellular and Molecular Biology of Filamentous Fungi. Washington, DC: ASM Press; 2010. p. 501–35.

    Google Scholar 

  • Dyer PS, Darbyshir H. Utilisation of the sexual cycle in filamentous fungi as a tool for gene identification, strain improvement and gene manipulation. Fungal Biol Rev. 2016 (manuscript under review).

    Google Scholar 

  • Dyer PS, Inderbitzin P, Debuchy R. Mating-type structure, function, regulation and evolution in the Pezizomycotina. In: Wendland J, editor. The Mycota, vol. XIV. Berlin: Springer; 2015 (In press).

    Google Scholar 

  • Dyer PS, O’Gorman CM. A fungal sexual revolution: Aspergillus and Penicillium show the way. Curr Opin Microbiol. 2011;14:649–54. doi:10.1016/j.mib.2011.10.001.

    Article  Google Scholar 

  • Dyer PS, O’Gorman CM. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev. 2012;36:165–92. doi:10.1111/j.1574-6976.2011.00308.x.

    Article  CAS  Google Scholar 

  • Dyer PS, Paoletti M. Reproduction in Aspergillus fumigatus: sexuality in a supposedly asexual species? Med Mycol. 2005;43:S7–14. doi:10.1080/13693780400029015.

    Google Scholar 

  • Dyer PS, Ingram DS, Johnstone K. The control of sexual morphogenesis in the Ascomycotina. Biol Rev. 1992;67:421–58. doi:10.1111/j.1469-185X.1992.tb01189.x.

    Article  Google Scholar 

  • Dyer PS, Hansen J, Delaney A, Lucas JA. Genetic control of resistance to the sterol 14α-demethylase inhibitor fungicide prochloraz in the cereal eyespot pathogen Tapesia yallundae. Appl Environ Microbiol. 2000;66:4599–604. doi:10.1128/AEM.66.11.4599-4604.2000..

    Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Sampaio JP. Basidiomycetous yeasts. In: McLaughlin DJ, McLaughlin EG, Lemke PA, editors. The Mycota, Systematics and Evolution, vol. VII, Part B. Berlin: Springer; 2001. p. 1–36.

    Google Scholar 

  • Foulongne-Oriol M. Genetic linkage mapping in fungi: current state, applications, and future trends. Appl Microbiol Biot. 2012;95:891–904. doi:10.1007/s00253-012-4228-4.

    Article  CAS  Google Scholar 

  • Fraser JA, Heitman J. Fungal mating-type loci. Curr Biol. 2003;13:792–5. doi:10.1016/j.cub.2003.09.046.

    Article  Google Scholar 

  • Frisvad JC, Petersen LM, Lyhne EK, Larsen TO. Formation of sclerotia and production of indoloterpenes by Aspergillus niger and other species in section Nigri. PLoS One. 2014;9, e94857. doi:10.1371/journal.pone.0094857.

    Article  Google Scholar 

  • Grognet P, Bidard F, Kuchly C, Tong LC, Coppin E, Benkhali JA. Maintaining two mating types: structure of the mating type locus and its role in heterokaryosis in Podospora anserina. Genetics. 2014;197:421–32. doi:10.1534/genetics.113.159988.

    Article  Google Scholar 

  • Hall C. Quantitative genetics in Neurospora. In: Kasbekar DP, McCluskey K, editors. Neurospora Genomics and Molecular Biology. Norfolk: Caister Academic Press; 2013. p. 65–84.

    Google Scholar 

  • Hamamoto H, Hasegawa K, Nakaune R, Lee YJ, Makizumi Y, Akutsu K, et al. Tandem repeat of a transcriptional enhancer upstream of the sterol 14α-demethylase gene (CYP51) in Penicillium digitatum. Appl Environ Microbiol. 2000;66:3421–6. doi:10.1128/AEM.66.8.3421-3426.2000.

    Article  CAS  Google Scholar 

  • Heitman JH, Kronstad JW, Taylor JW, Casselton LA. Sex in Fungi – Molecular Determination and Evolutionary Implications. Washington: ASM Press; 2007.

    Google Scholar 

  • Horn BW, Ramirez-Prado JH, Carbone I. Sexual reproduction and recombination in the aflatoxin producing fungus Aspergillus parasiticus. Fungal Genet Biol. 2009;46:169–75. doi:10.1016/j.fgb.2008.11.004.

    Article  CAS  Google Scholar 

  • Houbraken J, Dyer PS. Induction of the sexual cycle in filamentous Ascomycetes. In: van den Berg MA, Maruthachalam K, editors. Genetic transformation systems in fungi, vol. 2. Berlin: Springer; 2015. p. 23–45. doi:10.1007/978-3-319-10503-1.

    Google Scholar 

  • Knight SC, Anthony VM, Brady AM, Greenland AJ, Heaney SP, Murray DC, et al. Rationale and perspectives on the development of fungicides. Annu Rev Phytopathol. 1997;35:349–72. doi:10.1146/annurev.phyto.35.1.349.

    Article  CAS  Google Scholar 

  • Kretschmer M, Leroch M, Mosbach A, Walker AS, Fillinger MD, et al. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathogens. 2009;5:e1000696. doi:10.1371/journal.ppat.1000696.

    Article  Google Scholar 

  • Ma Z, Michailides TJ. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protect. 2005;24:853–63. doi:10.1016/j.cropro.2005.01.011.

    Article  CAS  Google Scholar 

  • Martin T, Lu SW, van Tilbeurgh H, Ripoll DR, Dixelius C, Turgeon BG, Debuchy R. Tracing the origin of the fungal α1 domain places its ancestor in the HMG-box superfamily: implications for fungal mating-type evolution. PLoS One. 2010;5, e15199. doi:10.1371/journal.pone.0015199.

    Article  Google Scholar 

  • Metzenberg RL, Glass NL. Mating type and mating strategies in Neurospora. Bioessays. 1990;12:53–9.

    Article  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 1991;88:9828–32. doi:10.1073/pnas.88.21.9828.

    Article  CAS  Google Scholar 

  • Miles CM, Wayne M. Quantitative trait locus (QTL) analysis. Nat Educ. 2008;1:208.

    Google Scholar 

  • Moore D, Novak Frazer LA. Essential fungal genetics. New York: Springer-Verlag; 2002.

    Google Scholar 

  • Nowrousian M, Teichert I, Masloff S, Kück U. Whole-genome sequencing of Sordaria macrospora mutants identifies developmental genes. G3, Genes, Genomes. Genetics. 2012;2:261–70. doi:10.1534/g3.111.001479.

    CAS  Google Scholar 

  • O’Gorman CM, Fuller HT, Dyer PS. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature. 2009;457:471–4. doi:10.1038/nature07528.

    Article  Google Scholar 

  • Olarte RA, Horn BW, Dorner JW, Monacell JT, Singh R, Stone EA, et al. Effect of sexual recombination on population diversity in aflatoxin production by Aspergillus flavus and evidence for cryptic heterokaryosis. Mol Ecol. 2012;21:1453–76. doi:10.1111/j.1365-294X.2011.05398.x.

    Article  Google Scholar 

  • Paoletti M, Seymour FA, Alcocer MJ, Kaur N, Calvo AM, Archer DB, et al. Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans. Curr Biol. 2007;17:1384–9. doi:10.1016/j.cub.2007.07.012.

    Article  CAS  Google Scholar 

  • Pöggeler S, Masloff S, Jacobsen S, Kück U. Karyotype polymorphism correlates with intraspecific infertility in the homothallic ascomycete Sordaria macrospora. J Evol Biol. 2000;13:281–9. doi:10.1046/j.1420-9101.2000.00174.x.

    Google Scholar 

  • Pomraning KR, Smith KM, Freitag M. Bulk segregant analysis followed by high-throughput sequencing reveals the Neurospora cell cycle gene, ndc-1, to be allelic with the gene for ornithine decarboxylase, spe-1. Eukaryot Cell. 2011;10:724–33. doi:10.1128/EC.00016-11.

    Article  CAS  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK. Transgressive segregation, adaption and speciation. Heredity. 1999;83:363–72. doi:10.1038/sj.hdy.6886170.

    Article  Google Scholar 

  • Ropars J, López-Villavicencio M, Dupont J, Snirc A, Gillot G, Coton M, Jany J, Coton E, Giraud T. Induction of sexual reproduction and genetic diversity in the cheese fungus Penicillium roqueforti. Evol Appl. 2014;7:433–41. doi:10.1111/eva.12140.

    Article  Google Scholar 

  • Seidl V, Seribel C, Kubicek CP, Schmoll M. Sexual development in the industrial workhorse Trichoderma reesei. Proc Natl Acad Sci U S A. 2009;106:13909–14. doi:10.1073/pnas.0904936106.

    Article  CAS  Google Scholar 

  • Swilaiman SS. Sexual potential and population biology of fungal Aspergillus and Penicillium species. Ph.D. Thesis. Nottingham: University of Nottingham; 2013.

    Google Scholar 

  • Serna L, Stadler D. Nuclear division cycle in germinating conidia of Neurospora crassa. J Bacteriol. 1978;136:341–51.

    CAS  Google Scholar 

  • Todd RB, Davis MA, Hynes MJ. Genetic manipulation of Aspergillus nidulans: meiotic progeny for genetic analysis and strain construction. Nat Protoc. 2007;2:811–21. doi:10.1038/nprot.2007.112.

    Google Scholar 

  • Vitalini MW, Morgan LW, March IJ, Bell-Pedersen D. A genetic selection for circadian output pathway mutations in Neurospora crassa. Genetics. 2004;167:119–29. doi:10.1534/genetics.167.1.119.

    Google Scholar 

  • Wood HM, Dickinson MJ, Lucas JA, Dyer PS. Cloning of the CYP51 gene from the eyespot pathogen Tapesia yallundae indicates that resistance to the DMI fungicide prochloraz is not related to sequence changes in the gene encoding the target site enzyme. FEMS Microbiol Lett. 2001;196:183–7. doi:10.1111/j.1574-6968.2001.tb10562.x.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Dyer B.A., M.A., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ashton, G.D., Dyer, P.S. (2016). Sexual Development in Fungi and Its Uses in Gene Expression Systems. In: Schmoll, M., Dattenböck, C. (eds) Gene Expression Systems in Fungi: Advancements and Applications. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27951-0_15

Download citation

Publish with us

Policies and ethics