Skip to main content

Awakening of Fungal Secondary Metabolite Gene Clusters

  • Chapter
  • First Online:
Book cover Gene Expression Systems in Fungi: Advancements and Applications

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Sequencing of fungal genomes and systematic genome mining concerning so far undiscovered secondary metabolite (SM) gene clusters have uncovered the great potential of fungal species for SM biosynthesis. Until now, only for relatively few clusters the corresponding metabolites are known. Even less is known about the regulation of their production. However, the latter is crucial to explore the full biosynthesis potential of fungal strains. It can be expected that this knowledge will lead to the discovery of novel drugs. Here, we discuss some of the strategies allowing for the activation of unknown silent SM gene clusters. For example, the application of cultivation conditions simulating the natural environment of fungi led to the discovery of new natural products. Especially co-cultivation of distinct bacterial and fungal partners often caused the modulation of gene expression and the formation of novel molecules. Interestingly, even the addition of bacterial molecules such as lipopolysaccharide was apparently sufficient to trigger a response of the fungal partner. Another successful approach is to delete, overexpress or inhibit histone-modifying enzymes/genes. In line, approaches targeting histone acetyltransferases led to some new and interesting products. Although these methods allow for activation of silent gene clusters without rationale prediction, they will not help to systematically activate distinct SM clusters in fungal genomes. This problem can be overcome by novel technologies of synthetic biology. One example is the expression of fungal SM gene clusters as polycistronic mRNA that encodes all required pathway-specific genes separated by 2A peptide sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albright JC, Henke MT, Soukup AA, McClure RA, Thomson RJ, Keller NP, Kelleher NL. Large-scale metabolomics reveals a complex response of Aspergillus nidulans to epigenetic perturbation. ACS Chem Biol. 2015;10(6):1535–41.

    Article  CAS  Google Scholar 

  • Amaike S, Keller NP. Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus. Eukaryot Cell. 2009;8:1051–60.

    Article  CAS  Google Scholar 

  • Andersen MR, Nielsen JB, Klitgaard A, Petersen LM, Zachariasen M, Hansen TJ, Blicher LH, Gotfredsen CH, Larsen TO, Nielsen KF, Mortensen UH. Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc Natl Acad Sci U S A. 2013;110:E99–107.

    Article  CAS  Google Scholar 

  • Bajaj I, Veiga T, van Dissel D, Pronk J, Daran J-M. Functional characterization of a Penicillium chrysogenum mutanase gene induced upon co-cultivation with Bacillus subtilis. BMC Microbiol. 2014;14:114.

    Article  CAS  Google Scholar 

  • Baker SP, Grant PA. The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene. 2007;26:5329–40.

    Article  CAS  Google Scholar 

  • Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science. 2008;320:1504–6.

    Article  CAS  Google Scholar 

  • Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis. 2014;14:13.

    Article  Google Scholar 

  • Berger H, Basheer A, Bock S, Reyes-Dominguez Y, Dalik T, Altmann F, Strauss J. Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster. Mol Microbiol. 2008;69:1385–98.

    Article  CAS  Google Scholar 

  • Bergmann S, Schumann J, Scherlach K, Lange C, Brakhage AA, Hertweck C. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol. 2007;3:213–7.

    Article  CAS  Google Scholar 

  • Bergmann S, Funk AN, Scherlach K, Schroeckh V, Shelest E, Horn U, Hertweck C, Brakhage AA. Activation of a silent fungal polyketide biosynthesis pathway through regulatory cross talk with a cryptic nonribosomal peptide synthetase gene cluster. Appl Environ Microbiol. 2010;76:8143–9.

    Article  CAS  Google Scholar 

  • Bertrand S, Schumpp O, Bohni N, Monod M, Gindro K, Wolfender J-L. De novo production of metabolites by fungal Co-culture of trichophyton rubrum and bionectria ochroleuca. J Nat Prod. 2013;76:1157–65.

    Article  CAS  Google Scholar 

  • Biran A, Meshorer E. Concise review: chromatin and genome organization in reprogramming. Stem Cells. 2012;30:1793–9.

    Article  CAS  Google Scholar 

  • Bok JW, Keller NP. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell. 2004;3:527–35.

    Article  CAS  Google Scholar 

  • Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Keller NP. LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell. 2005;4:1574–82.

    Article  CAS  Google Scholar 

  • Bok JW, Chiang Y-M, Szewczyk E, Reyes-Dominguez Y, Davidson AD, Sanchez JF, Lo H-C, Watanabe K, Strauss J, Oakley BR, Wang CCC, Keller NP. Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol. 2009;5:462–4.

    Article  CAS  Google Scholar 

  • Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013;11:21–32.

    Article  CAS  Google Scholar 

  • Brakhage AA, Schroeckh V. Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol. 2011;48:15–22.

    Article  CAS  Google Scholar 

  • Brakhage AA, Schuemann J, Bergmann S, Scherlach K, Schroeckh V, Hertweck C. Activation of fungal silent gene clusters: a new avenue to drug discovery. Prog Drug Res. 2008;66(1):3–12.

    Google Scholar 

  • Braus GH, Irniger S, Bayram O. Fungal development and the COP9 signalosome. Curr Opin Microbiol. 2010;13:672–6.

    Article  CAS  Google Scholar 

  • Bromann K, Toivari M, Viljanen K, Vuoristo A, Ruohonen L, Nakari-Setala T. Identification and characterization of a novel diterpene gene cluster in Aspergillus nidulans. PLoS One. 2012;7, e35450.

    Article  CAS  Google Scholar 

  • Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci U S A. 1996;93:1418–22.

    Article  CAS  Google Scholar 

  • Butchko RA, Brown DW, Busman M, Tudzynski B, Wiemann P. Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genet Biol. 2012;49:602–12.

    Article  CAS  Google Scholar 

  • Caddick MX, Arst Jr HN. Deletion of the 389 N-terminal residues of the transcriptional activator AREA does not result in nitrogen metabolite derepression in Aspergillus nidulans. J Bacteriol. 1998;180:5762–4.

    CAS  Google Scholar 

  • Carrozza MJ, Utley RT, Workman JL, Cote J. The diverse functions of histone acetyltransferase complexes. Trends Genet. 2003;19:321–9.

    Article  CAS  Google Scholar 

  • Chang PK, Ehrlich KC. Genome-wide analysis of the Zn(II)(2)Cys(6) zinc cluster-encoding gene family in Aspergillus flavus. Appl Microbiol Biotechnol. 2013;97:4289–300.

    Article  CAS  Google Scholar 

  • Chiang YM, Szewczyk E, Davidson AD, Keller N, Oakley BR, Wang CC. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J Am Chem Soc. 2009;131:2965–70.

    Article  CAS  Google Scholar 

  • Chung YM, El-Shazly M, Chuang DW, Hwang TL, Asai T, Oshima Y, Ashour ML, Wu YC, Chang FR. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, induces the production of anti-inflammatory cyclodepsipeptides from Beauveria felina. J Nat Prod. 2013;76:1260–6.

    Article  CAS  Google Scholar 

  • Craney A, Ahmed S, Nodwell J. Towards a new science of secondary metabolism. J Antibiot (Tokyo). 2013;66:387–400.

    Article  CAS  Google Scholar 

  • Crawford JM, Townsend CA. New insights into the formation of fungal aromatic polyketides. Nat Rev Microbiol. 2010;8:879–89.

    Article  CAS  Google Scholar 

  • Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J. Pestalone, a New antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod. 2001;64:1444–6.

    Article  CAS  Google Scholar 

  • Degenkolb T, Heinze S, Schlegel B, Strobel G, Gräfe U. Formation of New Lipoaminopeptides, Acremostatins A, B, and C, by Co-cultivation of Acremonium sp. Tbp-5 and Mycogone rosea DSM 12973. Biosci Biotechnol Biochem. 2002;66:883–6.

    Article  CAS  Google Scholar 

  • Espeso EA, Penalva MA. Three binding sites for the Aspergillus nidulans PacC zinc-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenicillin N synthase gene promoter. J Biol Chem. 1996;271:28825–30.

    Article  CAS  Google Scholar 

  • Flaherty JE, Payne GA. Overexpression of aflR leads to upregulation of pathway gene transcription and increased aflatoxin production in Aspergillus flavus. Appl Environ Microbiol. 1997;63:3995–4000.

    CAS  Google Scholar 

  • Gacek A, Strauss J. The chromatin code of fungal secondary metabolite gene clusters. Appl Microbiol Biotechnol. 2012a;95:1389–404.

    Article  CAS  Google Scholar 

  • Gacek A, Strauss J. The chromatin code of fungal secondary metabolite gene clusters. Appl Microbiol Biotechnol. 2012b;95:1389–404.

    Article  CAS  Google Scholar 

  • Gacek-Matthews A, Noble LM, Gruber C, Berger H, Sulyok M, Marcos AT, Strauss J, Andrianopoulos A. KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans. Mol Microbiol. 2015;96(4):839–60.

    Article  CAS  Google Scholar 

  • Giese H, Sondergaard TE, Sorensen JL. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production. Fungal Biol. 2013;117:814–21.

    Article  CAS  Google Scholar 

  • Govind CK, Zhang F, Qiu H, Hofmeyer K, Hinnebusch AG. Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol Cell. 2007;25:31–42.

    Article  CAS  Google Scholar 

  • Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389:349–52.

    Article  CAS  Google Scholar 

  • Gsaller F, Hortschansky P, Beattie SR, Klammer V, Tuppatsch K, Lechner BE, Rietzschel N, Werner ER, Vogan AA, Chung D, Mühlenhoff U, Kato M, Cramer RA, Brakhage AA, Haas H. The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess. EMBO J. 2014;33:2261–76.

    Article  CAS  Google Scholar 

  • Hertweck C. The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl. 2009a;48:4688–716.

    Article  CAS  Google Scholar 

  • Hertweck C. Hidden biosynthetic treasures brought to light. Nat Chem Biol. 2009b;5:450–2.

    Article  CAS  Google Scholar 

  • Hoff B, Schmitt EK, Kuck U. CPCR1, but not its interacting transcription factor AcFKH1, controls fungal arthrospore formation in Acremonium chrysogenum. Mol Microbiol. 2005;56:1220–33.

    Article  CAS  Google Scholar 

  • Hortschansky P, Eisendle M, Al-Abdallah Q, Schmidt AD, Bergmann S, Thön M, Kniemeyer O, Abt B, Seeber B, Werner ER, Kato M, Brakhage AA, Haas H. Interaction of HapX with the CCAAT-binding complex—a novel mechanism of gene regulation by iron. EMBO J. 2007;26:3157–68.

    Article  CAS  Google Scholar 

  • Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, Shah P, Wymore F, Wortman JR, Sherlock G. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol. 2013;13:91.

    Article  CAS  Google Scholar 

  • Jabra-Rizk M. Pathogenesis of polymicrobial biofilms. Open Mycol J. 2011;5:39–43.

    Article  Google Scholar 

  • Kale SP, Milde L, Trapp MK, Frisvad JC, Keller NP, Bok JW. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genet Biol. 2008;45:1422–9.

    Article  CAS  Google Scholar 

  • Kamerewerd J, Zadra I, Kurnsteiner H, Kuck U. PcchiB1, encoding a class V chitinase, is affected by PcVelA and PcLaeA, and is responsible for cell wall integrity in Penicillium chrysogenum. Microbiology. 2011;157:3036–48.

    Article  CAS  Google Scholar 

  • Karimi-Aghcheh R, Bok JW, Phatale PA, Smith KM, Baker SE, Lichius A, Omann M, Zeilinger S, Seiboth B, Rhee C, Keller NP, Freitag M, Kubicek CP. Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. G3 (Bethesda). 2013;3:369–78.

    Article  CAS  Google Scholar 

  • Kennedy J, Turner G. delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet. 1996;253:189–97.

    Article  CAS  Google Scholar 

  • Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND. SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol. 2010;47:736–41.

    Article  CAS  Google Scholar 

  • Knuf C, Nielsen J. Aspergilli: systems biology and industrial applications. Biotechnol J. 2012;7:1147–55.

    Article  CAS  Google Scholar 

  • König CC, Scherlach K, Schroeckh V, Horn F, Nietzsche S, Brakhage AA, Hertweck C. Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus. ChemBioChem. 2013;14:938–42.

    Article  CAS  Google Scholar 

  • Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13:1057–98.

    Article  Google Scholar 

  • Lee I, Oh JH, Shwab EK, Dagenais TR, Andes D, Keller NP. HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet Biol. 2009;46:782–90.

    Article  CAS  Google Scholar 

  • Li C, Wang J, Luo C, Ding W, Cox DG. A new cyclopeptide with antifungal activity from the co-culture broth of two marine mangrove fungi. Nat Prod Res. 2014;28:616–21.

    Article  CAS  Google Scholar 

  • Lopez-Berges MS, Hera C, Sulyok M, Schafer K, Capilla J, Guarro J, Di Pietro A. The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Microbiol. 2013;87:49–65.

    Article  CAS  Google Scholar 

  • Maiya S, Grundmann A, Li SM, Turner G. The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. Chembiochem. 2006;7:1062–9.

    Article  CAS  Google Scholar 

  • Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011;39:W339–46.

    Article  CAS  Google Scholar 

  • Michielse CB, Pfannmuller A, Macios M, Rengers P, Dzikowska A, Tudzynski B. The interplay between the GATA transcription factors AreA, the global nitrogen regulator and AreB in Fusarium fujikuroi. Mol Microbiol. 2014;91:472–93.

    Article  CAS  Google Scholar 

  • Mihlan M, Homann V, Liu TW, Tudzynski B. AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol Microbiol. 2003;47:975–91.

    Article  CAS  Google Scholar 

  • Moree WJ, Phelan VV, Wu C-H, Bandeira N, Cornett DS, Duggan BM, Dorrestein PC. Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci. 2012;109:13811–6.

    Article  CAS  Google Scholar 

  • Mueller JE, Canze M, Bryk M. The requirements for COMPASS and Paf1 in transcriptional silencing and methylation of histone H3 in Saccharomyces cerevisiae. Genetics. 2006;173:557–67.

    Article  CAS  Google Scholar 

  • Nathan C, Cars O. Antibiotic resistance—problems, progress, and prospects. N Engl J Med. 2014;371:1761–3.

    Article  Google Scholar 

  • Netzker T, Fischer J, Weber J, Mattern DJ, Konig CC, Valiante V, Schroeckh V, Brakhage AA. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol. 2015;6:299.

    Article  Google Scholar 

  • Niehaus EM, Janevska S, von Bargen KW, Sieber CM, Harrer H, Humpf HU, Tudzynski B. Apicidin F: characterization and genetic manipulation of a new secondary metabolite gene cluster in the rice pathogen Fusarium fujikuroi. PLoS One. 2014;9, e103336.

    Article  CAS  Google Scholar 

  • Nützmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schümann J, Hertweck C, Strauss J, Brakhage AA. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci. 2011;108:14282–7.

    Article  Google Scholar 

  • Nützmann HW, Fischer J, Scherlach K, Hertweck C, Brakhage AA. Distinct amino acids of histone H3 control secondary metabolism in Aspergillus nidulans. Appl Environ Microbiol. 2013;79:6102–9.

    Article  CAS  Google Scholar 

  • Oh D-C, Jensen PR, Kauffman CA, Fenical W. Libertellenones A-D: induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorg Med Chem. 2005;13:5267–73.

    Article  CAS  Google Scholar 

  • Oh D-C, Kauffman CA, Jensen PR, Fenical W. Induced production of emericellamides A and B from the marine-derived fungus emericella sp. in competing co-culture. J Nat Prod. 2007;70:515–20.

    Google Scholar 

  • Palmer JM, Bok JW, Lee S, Dagenais TR, Andes DR, Kontoyiannis DP, Keller NP. Loss of CclA, required for histone 3 lysine 4 methylation, decreases growth but increases secondary metabolite production in Aspergillus fumigatus. PeerJ. 2013;1, e4.

    Article  CAS  Google Scholar 

  • Park HB, Kwon HC, Lee C-H, Yang HO. Glionitrin A, an antibiotic-antitumor metabolite derived from competitive interaction between abandoned mine microbes. J Nat Prod. 2009;72:248–52.

    Article  CAS  Google Scholar 

  • Patananan AN, Palmer JM, Garvey GS, Keller NP, Clarke SG. A novel automethylation reaction in the Aspergillus nidulans LaeA protein generates S-methylmethionine. J Biol Chem. 2013;288:14032–45.

    Article  CAS  Google Scholar 

  • Patterson GML, Bolis CM. Fungal cellwall polysaccharides elicit an antifungal secondary metabolite (phytoalexin) in the cyanobacterium scytonema ocelutum. J Phycol. 1997;33:54–60.

    Google Scholar 

  • Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, Nierman WC, Keller NP. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog. 2007;3, e50.

    Article  CAS  Google Scholar 

  • Priebe S, Linde J, Albrecht D, Guthke R, Brakhage AA. FungiFun: a web-based application for functional categorization of fungal genes and proteins. Fungal Genet Biol. 2011;48:353–8.

    Article  CAS  Google Scholar 

  • Rahman H, Austin B, Mitchell WJ, Morris PC, Jamieson DJ, Adams DR, Spragg AM, Schweizer M. Novel anti-infective compounds from marine bacteria. Mar Drugs. 2010;8:498–518.

    Article  CAS  Google Scholar 

  • Rateb ME, Hallyburton I, Houssen WE, Bull AT, Goodfellow M, Santhanam R, Jaspars M, Ebel R. Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture. RSC Advances. 2013;3:14444–50.

    Article  CAS  Google Scholar 

  • Reyes-Dominguez Y, Bok JW, Berger H, Shwab EK, Basheer A, Gallmetzer A, Scazzocchio C, Keller N, Strauss J. Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol Microbiol. 2010;76:1376–86.

    Article  CAS  Google Scholar 

  • Richter L, Wanka F, Boecker S, Storm D, Kurt T, Vural Ö, Süßmuth R, Meyer V. Engineering of Aspergillus niger for the production of secondary metabolites. Fungal Biol Biotechnol. 2014;1:4.

    Article  Google Scholar 

  • Roze LV, Arthur AE, Hong SY, Chanda A, Linz JE. The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster. Mol Microbiol. 2007;66:713–26.

    Article  CAS  Google Scholar 

  • Roze LV, Koptina AV, Laivenieks M, Beaudry RM, Jones DA, Kanarsky AV, Linz JE. Willow volatiles influence growth, development, and secondary metabolism in Aspergillus parasiticus. Appl Microbiol Biotechnol. 2011;92:359–70.

    Article  CAS  Google Scholar 

  • Sanchez JF, Somoza AD, Keller NP, Wang CCC. Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep. 2012;29:351–71.

    Article  CAS  Google Scholar 

  • Sarikaya Bayram O, Bayram O, Valerius O, Park HS, Irniger S, Gerke J, Ni M, Han KH, Yu JH, Braus GH. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet. 2010;6, e1001226.

    Article  CAS  Google Scholar 

  • Sarikaya-Bayram O, Palmer JM, Keller N, Braus GH, Bayram O. One Juliet and four Romeos: VeA and its methyltransferases. Front Microbiol. 2015;6:1.

    Article  Google Scholar 

  • Scherlach K, Nützmann HW, Schroeckh V, Dahse HM, Brakhage AA, Hertweck C. Cytotoxic pheofungins from an engineered fungus impaired in posttranslational protein modification. Angew Chem Int Ed Engl. 2001;50:9843–7.

    Article  CAS  Google Scholar 

  • Schmitt EK, Hoff B, Kuck U. Regulation of cephalosporin biosynthesis. Adv Biochem Eng Biotechnol. 2004;88:1–43.

    CAS  Google Scholar 

  • Schrettl M, Carberry S, Kavanagh K, Haas H, Jones GW, O'Brien J, Nolan A, Stephens J, Fenelon O, Doyle S. Self-protection against gliotoxin—a component of the gliotoxin biosynthetic cluster, GliT, completely protects Aspergillus fumigatus against exogenous gliotoxin. PLoS Pathog. 2010;6, e1000952.

    Article  CAS  Google Scholar 

  • Schroeckh V, Scherlach K, Nützmann H-W, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA. Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A. 2009a;106:14558–63.

    Article  CAS  Google Scholar 

  • Schroeckh V, Scherlach K, Nutzmann HW, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A. 2009b;106:14558–63.

    Article  CAS  Google Scholar 

  • Shaaban MI, Bok JW, Lauer C, Keller NP. Suppressor mutagenesis identifies a velvet complex remediator of Aspergillus nidulans secondary metabolism. Eukaryot Cell. 2010;9:1816–24.

    Article  CAS  Google Scholar 

  • Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem. 2006;75:243–69.

    Article  CAS  Google Scholar 

  • Shimizu K, Hicks JK, Huang TP, Keller NP. Pka, Ras and RGS protein interactions regulate activity of AflR, a Zn(II)2Cys6 transcription factor in Aspergillus nidulans. Genetics. 2003;165:1095–104.

    CAS  Google Scholar 

  • Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell. 2007;6:1656–64.

    Article  CAS  Google Scholar 

  • Smith DJ, Burnham MK, Bull JH, Hodgson JE, Ward JM, Browne P, Brown J, Barton B, Earl AJ, Turner G. Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J. 1990;9:741–7.

    CAS  Google Scholar 

  • Soukup AA, Chiang YM, Bok JW, Reyes-Dominguez Y, Oakley BR, Wang CC, Strauss J, Keller NP. Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Mol Microbiol. 2012;86:314–30.

    Article  CAS  Google Scholar 

  • Stocker-Worgotter E. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimatemetabolite production, and PKS genes. Nat Prod Rep. 2008;25:188–200.

    Article  Google Scholar 

  • Svahn KS, Göransson U, Chryssanthou E, Olsen B, Sjölin J, Strömstedt AA. Induction of gliotoxin secretion in Aspergillus fumigatus by bacteria-associated molecules. PLoS One. 2014;9, e93685.

    Article  CAS  Google Scholar 

  • Then Bergh K, Brakhage AA. Regulation of the Aspergillus nidulans Penicillin biosynthesis gene acvA (pcbAB) by amino acids: implication for involvement of transcription factor PACC. Appl Environ Microbiol. 1998;64:843–9.

    CAS  Google Scholar 

  • Thön M, Al Abdallah Q, Hortschansky P, Scharf DH, Eisendle M, Haas H, Brakhage AA. The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes. Nucleic Acids Res. 2010;38:1098–113.

    Article  CAS  Google Scholar 

  • Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Peñalva MA, Arst Jr HN. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 1995;14:779–90.

    CAS  Google Scholar 

  • Tribus M, Galehr J, Trojer P, Brosch G, Loidl P, Marx F, Haas H, Graessle S. HdaA, a major class 2 histone deacetylase of Aspergillus nidulans, affects growth under conditions of oxidative stress. Eukaryot Cell. 2005;4:1736–45.

    Article  CAS  Google Scholar 

  • Tudzynski B. Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol. 2014;5:656.

    Article  Google Scholar 

  • Unkles SE, Valiante V, Mattern DJ, Brakhage AA. Synthetic biology tools for bioprospecting of natural products in eukaryotes. Chem Biol. 2014;21:502–8.

    Article  CAS  Google Scholar 

  • Watanabe T, Izaki K, Takahashi H. New polyenic antibiotics active against gram-positive and - negative bacteria. I. Isolation and purification of antibiotics produced by Gluconobacter sp. W-315. J Antibiot (Tokyo). 1982;35:1141–7.

    Google Scholar 

  • Wiemann P, Tudzynski B. The nitrogen regulation network and its impact on secondary metabolism and pathogenicity. Norwich: Caister Academic Press; 2013. p. 111–42.

    Google Scholar 

  • Wu D, Oide S, Zhang N, Choi MY, Turgeon BG. ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus. PLoS Pathog. 2012;8, e1002542.

    Article  CAS  Google Scholar 

  • Yin W, Keller NP. Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol. 2011;49:329–39.

    Article  CAS  Google Scholar 

  • Yin WB, Amaike S, Wohlbach DJ, Gasch AP, Chiang YM, Wang CC, Bok JW, Rohlfs M, Keller NP. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR. Mol Microbiol. 2012;83:1024–34.

    Article  CAS  Google Scholar 

  • Zuck KM, Shipley S, Newman DJ. Induced production of N-formyl alkaloids from aspergillus fumigatus by co-culture with streptomyces peucetius. J Nat Prod. 2011;74:1653–7.

    Google Scholar 

  • Zhu F, Chen G, Chen X, Huang M, Wan X. Aspergicin, a new antibacterial alkaloid produced by mixed fermentation of two marine-derived mangrove epiphytic fungi. Chem Nat Compd. 2011;47:767–9.

    Article  CAS  Google Scholar 

  • Zutz C, Gacek A, Sulyok M, Wagner M, Strauss J, Rychli K. Small chemical chromatin effectors alter secondary metabolite production in Aspergillus clavatus. Toxins (Basel). 2013;5:1723–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel A. Brakhage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fischer, J., Schroeckh, V., Brakhage, A.A. (2016). Awakening of Fungal Secondary Metabolite Gene Clusters. In: Schmoll, M., Dattenböck, C. (eds) Gene Expression Systems in Fungi: Advancements and Applications. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27951-0_11

Download citation

Publish with us

Policies and ethics