Skip to main content

High-Throughput Construction of Genetically Modified Fungi

  • Chapter
  • First Online:
Book cover Gene Expression Systems in Fungi: Advancements and Applications

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Functional studies of fungal genomes are necessary for understanding the fundamentals of eukaryotic genetics and improving human life, as many fungi are economically important for industry, medicine and agriculture. As a prerequisite for functional studies, gene mutagenesis has been actively implemented and many technological advances developed. Prior to the widespread availability of genome sequences, fungal gene mutations were generated using radiation and insertional mutagenesis. Mutations generated using these methods were random and in small scale. With the advent of genome sequences, mutagenesis of fungal genes has been more targeted and carried out in high-throughput manner. Technical improvements in the construction of mutagenesis vectors and increased efficiency of homologous recombination in fungal cells has facilitated the high throughput mutation of fungal genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar-Pontes MV, de Vries RP, Zhou M. (Post-)genomics approaches in fungal research. Brief Funct Genomics. 2014;13(6):424–39.

    Article  Google Scholar 

  • Arganoza MT, Ohrnberger J, Min J, Akins RA. Suppressor mutants of Neurospora crassa that tolerate allelic differences at single or at multiple heterokaryon incompatibility loci. Genetics. 1994;137(3):731–42.

    CAS  Google Scholar 

  • Barbato C, Calissano M, Pickford A, Romano N, Sandmann G, Macino G. Mild RIP-an alternative method for in vivo mutagenesis of the albino-3 gene in Neurospora crassa. Mol Gen Genet. 1996;252(4):353–61.

    CAS  Google Scholar 

  • Beadle GW, Tatum EL. Genetic Control of Biochemical Reactions in Neurospora. Proc Natl Acad Sci U S A. 1941;27(11):499–506.

    Article  CAS  Google Scholar 

  • Blochlinger K, Diggelmann H. Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eukaryotic cells. Mol Cell Biol. 1984;4(12):2929–31.

    Article  CAS  Google Scholar 

  • Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A. 1991;88(22):10124–8.

    Article  CAS  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 1995;14(13):3206–14.

    CAS  Google Scholar 

  • Cambareri EB, Jensen BC, Schabtach E, Selker EU. Repeat-induced G-C to A-T mutations in Neurospora. Science. 1989;244(4912):1571–5.

    Article  CAS  Google Scholar 

  • Catlett NL, Lee BN, Yoder OC, Turgeon BG. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Newslett. 2003;50:9–11.

    Google Scholar 

  • Christie PJ. Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol. 1997;179(10):3085–94.

    CAS  Google Scholar 

  • Collopy PD, Colot HV, Park G, Ringelberg C, Crew CM, Borkovich KA, et al. High-throughput construction of gene deletion cassettes for generation of Neurospora crassa knockout strains. Methods Mol Biol. 2010;638:33–40.

    Article  CAS  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, et al. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A. 2006;103(27):10352–7.

    Article  CAS  Google Scholar 

  • Critchlow SE, Jackson SP. DNA end-joining: from yeast to man. Trends Biochem Sci. 1998;23(10):394–8.

    Article  CAS  Google Scholar 

  • De Souza CP, Hashmi SB, Osmani AH, Andrews P, Ringelberg CS, Dunlap JC, et al. Functional analysis of the Aspergillus nidulans kinome. PLoS One. 2013;8(3), e58008.

    Article  Google Scholar 

  • de Wouw APV, Howlett BJ. Fungal pathogenicity genes in the age of ‘omics’. Mol Plant Pathol. 2011;12(5):507–14.

    Article  Google Scholar 

  • Dunlap JC, Borkovich KA, Henn MR, Turner GE, Sachs MS, Glass NL, et al. Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. Adv Genet. 2007;57:49–96.

    Article  CAS  Google Scholar 

  • EspinelIngroff A. History of medical mycology in the United States. Clin Microbiol Rev. 1996;9(2):235–72.

    CAS  Google Scholar 

  • Fincham JR. Generation of new functional mutant alleles by premeiotic disruption of the Neurospora crassa am gene. Curr Genet. 1990;18(5):441–5.

    Article  CAS  Google Scholar 

  • Fitriana Y, Satoh K, Narumi I, Saito T. Ion-beam and gamma-ray irradiations induce thermotolerant mutants in the entomopathogenic fungus Metarhizium anisopliae s.l. Biocontrol Sci Technol. 2014;24(9):1052–61.

    Article  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature. 2003;422(6934):859–68.

    Article  CAS  Google Scholar 

  • Gatignol A, Baron M, Tiraby G. Phleomycin resistance encoded by the ble gene from transposon Tn 5 as a dominant selectable marker in Saccharomyces cerevisiae. Mol Gen Genet. 1987;207(2-3):342–8.

    Article  CAS  Google Scholar 

  • Gelvin SB. Agrobacterium and Plant Genes Involved in T-DNA Transfer and Integration. Annu Rev Plant Physiol Plant Mol Biol. 2000;51:223–56.

    Article  CAS  Google Scholar 

  • Genuis SJ. Fielding a current idea: exploring the public health impact of electromagnetic radiation. Public Health. 2008;122(2):113–24.

    Article  Google Scholar 

  • Ghorai S, Banik SP, Verma D, Chowdhury S, Mukherjee S, Khowala S. Fungal biotechnology in food and feed processing. Food Res Int. 2009;42(5-6):577–87.

    Article  CAS  Google Scholar 

  • Glass NL, Lee L. Isolation of Neurospora crassa A mating type mutants by repeat induced point (RIP) mutation. Genetics. 1992;132(1):125–33.

    CAS  Google Scholar 

  • Goodhead DT. Molecular and cell models of biological effects of heavy ion radiation. Radiat Environ Biophys. 1995;34(2):67–72.

    Article  CAS  Google Scholar 

  • Graia F, Lespinet O, Rimbault B, Dequard-Chablat M, Coppin E, Picard M. Genome quality control: RIP (repeat-induced point mutation) comes to Podospora. Mol Microbiol. 2001;40(3):586–95.

    Article  CAS  Google Scholar 

  • Gravelat FN, Askew DS, Sheppard DC. Targeted gene deletion in Aspergillus fumigatus using the hygromycin-resistance split-marker approach. Methods Mol Biol. 2012;845:119–30.

    Article  CAS  Google Scholar 

  • Grayburn WS, Selker EU. A natural case of RIP: degeneration of the DNA sequence in an ancestral tandem duplication. Mol Cell Biol. 1989;9(10):4416–21.

    Article  CAS  Google Scholar 

  • Gritz L, Davies J. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene. 1983;25(2-3):179–88.

    Article  CAS  Google Scholar 

  • Hagen U. Mechanisms of induction and repair of DNA double-strand breaks by ionizing radiation: some contradictions. Radiat Environ Biophys. 1994;33(1):45–61.

    Article  CAS  Google Scholar 

  • Hamann A, Feller F, Osiewacz HD. The degenerate DNA transposon Pat and repeat-induced point mutation (RIP) in Podospora anserina. Mol Gen Genet. 2000;263(6):1061–9.

    Article  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature. 1983;303(5913):179–80.

    Article  CAS  Google Scholar 

  • Hua-Van A, Hericourt F, Capy P, Daboussi MJ, Langin T. Three highly divergent subfamilies of the impala transposable element coexist in the genome of the fungus Fusarium oxysporum. Mol Gen Genet. 1998;259(4):354–62.

    Article  CAS  Google Scholar 

  • Jarai G, Marzluf GA. Generation of new mutants of nmr, the negative-acting nitrogen regulatory gene of Neurospora crassa, by repeat induced mutation. Curr Genet. 1991;20(4):283–8.

    Article  CAS  Google Scholar 

  • Jeon J, Park SY, Chi MH, Choi J, Park J, Rho HS, et al. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat Genet. 2007;39(4):561–5.

    Article  CAS  Google Scholar 

  • Jiang D, Zhu W, Wang Y, Sun C, Zhang KQ, Yang J. Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv. 2013;31(8):1562–74.

    Article  CAS  Google Scholar 

  • Kahmann R, Basse C. REMI (restriction enzyme mediated integration) and its impact on the isolation of pathogenicity genes in fungi attacking plants. Eur J Plant Pathol. 1999;105(3):221–9.

    Article  CAS  Google Scholar 

  • Kataoka T, Powers S, McGill C, Fasano O, Strathern J, Broach J, et al. Genetic analysis of yeast RAS1 and RAS2 genes. Cell. 1984;37(2):437–45.

    Google Scholar 

  • Kramer A, Paun L, Imhoff JF, Kempken F, Labes A. Development and Validation of a fast and optimized screening method for enhanced production of secondary metabolites using the marine Scopulariopsis brevicaulis strain LF580 producing anti-cancer active scopularide A and B. PLoS One. 2014;9(7):e103320.

    Article  Google Scholar 

  • Kück U, Hoff B. Application of the nourseothricin acetyltransferase gene (nat1) as dominant marker for the transformation of filamentous fungi. Fungal Genet Newslett. 2006;53:9–11.

    Google Scholar 

  • Kuspa A, Loomis WF. Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc Natl Acad Sci U S A. 1992;89(18):8803–7.

    Article  CAS  Google Scholar 

  • Liang L, Li J, Cheng L, Ling J, Luo Z, Bai M, et al. A high efficiency gene disruption strategy using a positive-negative split selection marker and electroporation for Fusarium oxysporum. Microbiol Res. 2014;169(11):835–43.

    Article  CAS  Google Scholar 

  • Ma CX, Jiang DL, Wei XY. Mutation breeding of Emericella foeniculicola TR21 for improved production of tanshinone IIA. Process Biochem. 2011;46(10):2059–63.

    Google Scholar 

  • Ma LQ, Kazama Y, Inoue H, Abe T, Hatakeyama S, Tanaka S. The type of mutations induced by carbon-ion-beam irradiation of the filamentous fungus Neurospora crassa. Fungal Biol. 2013;117(4):227–38.

    Article  CAS  Google Scholar 

  • Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet. 2005;48(1):1–17.

    Article  CAS  Google Scholar 

  • Nakayashiki H, Nishimoto N, Ikeda K, Tosa Y, Mayama S. Degenerate MAGGY elements in a subgroup of Pyricularia grisea: a possible example of successful capture of a genetic invader by a fungal genome. Mol Gen Genet. 1999;261(6):958–66.

    Article  CAS  Google Scholar 

  • Neuveglise C, Sarfati J, Latge JP, Paris S. Afut1, a retrotransposon-like element from Aspergillus fumigatus. Nucleic Acids Res. 1996;24(8):1428–34.

    Article  CAS  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A. 2004;101(33):12248–53.

    Article  CAS  Google Scholar 

  • Okamoto PM, Garrett RH, Marzluf GA. Molecular characterization of conventional and new repeat-induced mutants of nit-3, the structural gene that encodes nitrate reductase in Neurospora crassa. Mol Gen Genet. 1993;238(1-2):81–90.

    CAS  Google Scholar 

  • Ooi SL, Shoemaker DD, Boeke JD. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science. 2001;294(5551):2552–6.

    Article  CAS  Google Scholar 

  • Paietta JV, Marzluf GA. Gene disruption by transformation in Neurospora crassa. Mol Cell Biol. 1985;5(7):1554–9.

    Article  CAS  Google Scholar 

  • Pall ML. The use of Ignite (Basta; glufosinate; phosphinothricin) to select transformants of bar-containing plasmids in Neurospora crassa. Fungal Genet Newslett. 1993;40:58.

    Google Scholar 

  • Park G, Colot HV, Collopy PD, Krystofova S, Crew C, Ringelberg C, et al. High-throughput production of gene replacement mutants in Neurospora crassa. Methods Mol Biol. 2011;722:179–89.

    Article  CAS  Google Scholar 

  • Raymond CK, Sims EH, Olson MV. Linker-mediated recombinational subcloning of large DNA fragments using yeast. Genome Res. 2002;12(1):190–7.

    Article  CAS  Google Scholar 

  • Regensburg-Tuink AJ, Hooykaas PJ. Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature. 1993;363(6424):69–71.

    Google Scholar 

  • Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–11.

    Article  CAS  Google Scholar 

  • Sage E, Girard PM, Francesconi S. Unravelling UVA-induced mutagenesis. Photochem Photobiol Sci. 2012;11(1):74–80.

    Article  CAS  Google Scholar 

  • Schiestl RH, Petes TD. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1991;88(17):7585–9.

    Article  CAS  Google Scholar 

  • Selker EU. Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet. 1990;24:579–613.

    Article  CAS  Google Scholar 

  • Selker EU. Repeat-induced gene silencing in fungi. Adv Genet. 2002;46:439–50.

    Article  CAS  Google Scholar 

  • Shinohara S, Fitriana Y, Satoh K, Narumi I, Saito T. Enhanced fungicide resistance in Isaria fumosorose a following ionizing radiation-induced mutagenesis. FEMS Microbiol Lett. 2013;349(1):54–60.

    Google Scholar 

  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989;122(1):19–27.

    CAS  Google Scholar 

  • Staben C, Jensen B, Singer M, Pollock J, Schechtman M, Kinsey J, et al. Use of a bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet Newslett. 1989;36:79–81.

    Google Scholar 

  • Stafford H. Crown gall disease and Agrobacterium tumefaciens: A study of the history, present knowledge, missing information, and impact on molecular genetics. Botanical Rev. 2000;66(1):99–118.

    Article  Google Scholar 

  • Sureka S, Chakravorty A, Holmes EC, Spassibojko O, Bhatt N, Wu D, et al. Standardization of functional reporter and antibiotic resistance cassettes to facilitate the genetic engineering of filamentous fungi. ACS Synth Biol. 2014;3(12):960–2.

    Article  CAS  Google Scholar 

  • Szewczyk E, Nayak T, Oakley CE, Edgerton H, Xiong Y, Taheri-Talesh N, et al. Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc. 2006;1(6):3111–20.

    Article  CAS  Google Scholar 

  • Valent B. Rice blast as a model system for plant pathology. Phytopathology. 1990;80:33–6.

    Article  Google Scholar 

  • Wach A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast. 1996;12(3):259–65.

    Article  CAS  Google Scholar 

  • Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001;412(6847):607–14.

    Article  CAS  Google Scholar 

  • Yarden O, Ebbole DJ, Freeman S, Rodriguez RJ, Dickman MB. Fungal biology and agriculture: Revisiting the field. Mol Plant Microbe Interact. 2003;16(10):859–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. Borkovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Park, G., Ouyang, S., Borkovich, K.A. (2016). High-Throughput Construction of Genetically Modified Fungi. In: Schmoll, M., Dattenböck, C. (eds) Gene Expression Systems in Fungi: Advancements and Applications. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27951-0_10

Download citation

Publish with us

Policies and ethics