Skip to main content

Discriminative Dimensionality Reduction for Patch-Based Label Fusion

  • Conference paper
  • First Online:
Machine Learning Meets Medical Imaging (MLMMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9487))

Included in the following conference series:

Abstract

In this last decade, multiple-atlas segmentation (MAS) has emerged as a promising technique for medical image segmentation. In MAS, a novel target image is segmented by fusing the label maps of a set of annotated images (or atlases), after spatial normalization. Weighted voting is a well-known label fusion strategy consisting of computing each target label as a weighted average of the atlas labels in a local neighborhood. The weights, denoting the local anatomical similarity of the candidate atlases, are often approximated using image-patch similarity measurements. Such an approach, known as patch-based label fusion (PBLF), may fail to discriminate the anatomically relevant patches in challenging regions with high label variability. In order to overcome this limitation we propose a supervised method that embeds the original image patches onto a space that emphasizes the appearance characteristics that are critical for a correct labeling, while supressing the irrelevant ones. We show that PBLF using the embedded patches compares favourably with state-of-the-art methods in brain MR image segmentation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The estimated label map in the common space \(\hat{F}\) is finally transformed back to the original target space and thresholded to obtain the binary labels.

  2. 2.

    http://www.adni-info.org/.

  3. 3.

    http://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main_Page.

References

  1. Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, R.V., Rueckert, D.: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46, 726–38 (2009)

    Article  Google Scholar 

  2. Amieva, H., Le Goff, M., Millet, X., Orgogozo, J., Prs, K., Barberger-Gateau, P., Jacqmin-Gadda, H., Dartigues, J.: Prodromal Alzheimer’s disease: successive emergence of the clinical symptoms. Ann. Neurol. 64, 492–498 (2008)

    Article  Google Scholar 

  3. Artaechevarria, X., Munoz-Barrutia, A., Ortiz-de Solorzano, C.: Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans. Med. Imaging 28(8), 1266–1277 (2009)

    Article  Google Scholar 

  4. Coupé, P., Manjón, J., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)

    Article  Google Scholar 

  5. Duda, R.O., Hart, P.E., Stork, D.H.: Pattern Classification. Wiley Interscience, New York (2000)

    MATH  Google Scholar 

  6. Friedman, J.H.: Regularized discriminant analysis. J. Am. Stat. Assoc. 84(405), 165–175 (1989)

    Article  MathSciNet  Google Scholar 

  7. Goshtasby, A.A.: 2-D and 3-D Image Registration: For Medical, Remote Sensing, and Industrial Applications. Wiley-Interscience, Hoboken (2005)

    Google Scholar 

  8. He, X.F., Niyogi, P.: Locality preserving projections. In: NIPS (2003)

    Google Scholar 

  9. He, X., Cai, D., Yan, S., Zhang, H.: Neighborhood preserving embedding. In: ICCV (2005)

    Google Scholar 

  10. Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)

    Article  Google Scholar 

  11. Rohlfing, T., Brandt, R., Menzel, R., Maurer Jr., C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)

    Google Scholar 

  12. Rousseau, F., Habas, P.A., Studholme, C.: A supervised patch-based approach for human brain labeling. IEEE Trans. Med. Imaging 30(10), 1852–1862 (2011)

    Article  Google Scholar 

  13. Sanroma, G., Wu, G., Gao, Y., Shen, D.: Learning-based atlas selection for multiple-atlas segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3111–3117. IEEE (2014)

    Google Scholar 

  14. Sanroma, G., Wu, G., Gao, Y., Shen, D.: Learning to rank atlases for multiple-atlas segmentation. IEEE Trans. Med. Imaging 33(10), 1939–1953 (2014)

    Article  Google Scholar 

  15. Sanroma, G., Wu, G., Gao, Y., Thung, K.H., Guo, Y., Shen, D.: A transversal approach for patch-based label fusion via matrix completion. Med. Image Anal. 24(1), 135–148 (2015)

    Article  Google Scholar 

  16. Sanroma, G., Wu, G., Thung, K., Guo, Y., Shen, D.: Novel multi-atlas segmentation by matrix completion. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 207–214. Springer, Heidelberg (2014)

    Google Scholar 

  17. Tong, T., Wolz, R., Hajnal, J.V., Rueckert, D.: Segmentation of brain MR images via sparse patch representation. In: STMI (2012)

    Google Scholar 

  18. Tong, T., Wolz, R., Coupé, P., Hajnal, J.V., Rueckert, D.: Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling. NeuroImage 76, 11–23 (2013)

    Article  Google Scholar 

  19. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1, Supplement 1), S61–S72 (2009)

    Article  Google Scholar 

  20. Wu, G., Jia, H., Wang, Q., Shen, D.: Sharp mean: groupwise registration guided by sharp mean image and tree-based registration. NeuroImage 56(4), 1968–1981 (2012)

    Article  Google Scholar 

  21. Wu, G., Kim, M., Sanroma, G., Wang, Q., Munsell, B.C., Shen, D., Initiative, A.D.N., et al.: Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition. NeuroImage 106, 34–46 (2015)

    Article  Google Scholar 

  22. Zhang, D., Guo, Q., Wu, G., Shen, D.: Sparse patch-based label fusion for multi-atlas segmentation. In: Yap, P.-T., Liu, T., Shen, D., Westin, C.-F., Shen, L. (eds.) MBIA 2012. LNCS, vol. 7509, pp. 94–102. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Sanroma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sanroma, G. et al. (2015). Discriminative Dimensionality Reduction for Patch-Based Label Fusion. In: Bhatia, K., Lombaert, H. (eds) Machine Learning Meets Medical Imaging. MLMMI 2015. Lecture Notes in Computer Science(), vol 9487. Springer, Cham. https://doi.org/10.1007/978-3-319-27929-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27929-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27928-2

  • Online ISBN: 978-3-319-27929-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics