Skip to main content

Node-Immunization Strategies in a Stochastic Epidemic Model

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Big Data (MOD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9432))

Included in the following conference series:

Abstract

The object under study is an epidemic spread of a disease through individuals. A stochastic process is first introduced, inspired in classical Susceptible, Infected and Removed (SIR) model. In order to jeopardize the epidemic spread, two different immunization strategies are proposed. A combinatorial optimization problem is further formalized. The goal is to minimize the effect of the disease spread, choosing a correct immunization strategy, subject to a budget constraint. We are witness of a counter-intuitive result: in non-virulent scenarios, it is better to immunize common individuals rather than communicative ones. A discussion is provided, together with open problems and trends for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabasi, A.: Linked: The New Science of Networks. Perseus Publishing, Cambridge (2002)

    Google Scholar 

  2. Bayati, M., Kim, J.H., Saberi, A.: A sequential algorithm for generating random graphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 326–340. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Bollobás, B.: Random Graphs. Academic Press, London (1985)

    MATH  Google Scholar 

  4. Fine, P.E.: A commentary on the mechanical analogue to the reed-frost epidemic model. Am. J. Epidemiol. 106(2), 87–100 (1977)

    Google Scholar 

  5. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Keeling, M.J., Eames, K.T.: Networks and epidemic models. J. Royal Soc. Interface 2(4), 295–307 (2005)

    Article  Google Scholar 

  7. Kenah, E., Robins, J.M.: Network-based analysis of stochastic SIR epidemic models with random and proportionate mixing. J. Theor. Biol. 249(4), 706–722 (2007)

    Article  MathSciNet  Google Scholar 

  8. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)

    Article  Google Scholar 

  9. Macdonald, B., Shakarian, P., Howard, N., Moores, G.: Spreaders in the network SIR model: an empirical study (2012). CoRR abs/1208.4269

  10. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  11. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001)

    Article  Google Scholar 

  13. Roberts, F.S.: Bioterrorism: Mathematical Modeling Applications in Homeland Security. Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (PA) (2003)

    Google Scholar 

  14. Santhanam, G.R., Suvorov, Y., Basu, S., Honavar, V.: Verifying intervention policies to counter infection propagation over networks: a model checking approach. In: AAAI (2011)

    Google Scholar 

  15. Shirley, M.D., Rushton, S.P.: The impacts of network topology on disease spread. Ecol. Complex. 2(3), 287–299 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Piccini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Piccini, J., Robledo, F., Romero, P. (2015). Node-Immunization Strategies in a Stochastic Epidemic Model. In: Pardalos, P., Pavone, M., Farinella, G., Cutello, V. (eds) Machine Learning, Optimization, and Big Data. MOD 2015. Lecture Notes in Computer Science(), vol 9432. Springer, Cham. https://doi.org/10.1007/978-3-319-27926-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27926-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27925-1

  • Online ISBN: 978-3-319-27926-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics