Skip to main content

High-Throughput DNA Sequencing and the Next Generation of Molecular Markers in Wildlife Research

  • Chapter
  • First Online:
Current Trends in Wildlife Research

Part of the book series: Wildlife Research Monographs ((WIREMO,volume 1))

Abstract

Molecular markers have found pervasive application in the study of wildlife populations, informing issues as broad such as the evolutionary relationships among species, population genetic structure and gene flow among populations, and relatedness among individuals. The type and scope of molecular markers favoured by molecular ecologists is currently undergoing a change, prompted by the development of high-throughput, next-generation DNA sequencing technologies. The aim of this chapter is to provide an overview of these new sequencing approaches and highlight their utility to provide novel insight in wildlife research by yielding orders of magnitude more polymorphism data and facilitating analysis of both the neutral and adaptive components of the genome. Recent studies in key or emerging research areas that is benefitting from the use of next-generation sequencing are described, which includes conservation genetics, epigenetics, resolving the genetic basis of ecologically important traits, and speciation genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abzhanov A, Kuo WP, Hartmann C et al (2006) The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 442:563–567

    Article  CAS  PubMed  Google Scholar 

  • Amarasinghe HE, Clayton CI, Mallon EB (2014) Methylation and worker reproduction in the bumble-bee (Bombus terrestris). Proc R Soc Lond B Biol Sci 281:20132502

    Article  Google Scholar 

  • Ando H, Setsuko S, Horikoshi K et al (2013) Diet analysis by next-generation sequencing indicates the frequent consumption of introduced plants by the critically endangered red-headed wood pigeon (Columba janthina nitens) in oceanic island habitats. Ecol Evol 3:4057–4069

    Article  PubMed  PubMed Central  Google Scholar 

  • Angers B, Castonguay E, Massicotte R (2010) Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol Res 19:1283–1295

    Article  CAS  Google Scholar 

  • Avise JC (1998) The history and purview of phylogeography: a personal reflection. Mol Ecol 7:371–379

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography. Harvard University Press, Cambridge

    Google Scholar 

  • Avise JC (2004) Molecular markers, natural history & evolution. Chapman & Hall, New York

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:1–7. doi:10.1371/journal.pone.0003376

    Article  CAS  Google Scholar 

  • Baldauf SL (2003) Phylogeny for the faint of heart: a tutorial. Trends Genet 19:345–351. doi:10.1016/S0168-9525(03)00112-4

    Article  CAS  PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beebee T, Rowe G (2004) An introduction to molecular ecology. OUP, Oxford

    Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum liklihood estimation of a migration matrix and effective population sizes of n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 98:4563–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi K, Linderoth T, Vanderpool D et al (2013) Unlocking the vault: next-generation museum population genomics. Mol Ecol 22:6018–6032. doi:10.1111/mec.12516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown W, George MJ, Wilson A (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A 76:1967–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cano J, Shikano T, Kuparinen A, Merila J (2008) Genetic differentiation, effective population size and gene flow in marine fishes: implications for stock management. JIFS 5:1–10

    Google Scholar 

  • Catchen J, Hohenlohe PA, Bassham S et al (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3240

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen LS, Emmert-Streib F, Storey JD (2007) Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biol 8:R219. doi:10.1186/gb-2007-8-10-r219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coissac E, Riaz T, Puillandre N (2012) Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol Ecol 21:1834–1847

    Article  CAS  PubMed  Google Scholar 

  • Coltman DW, Wilson K, Pilkington JG et al (2001) A microsatellite polymorphism in the gamma interferon gene is associated with resistance to gastrointestinal nematodes in a naturally-parasitized population of Soay sheep. Parasitology 122:571–582

    Article  CAS  PubMed  Google Scholar 

  • Crews D, Gore AC, Hsu TS et al (2007) Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci U S A 104:5942–5946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csilléry K, Blum MGB, Gaggiotti OE, François O (2010) Approximate Bayesian Computation (ABC) in practice. Trends Ecol Evol 25:410–418. doi:10.1016/j.tree.2010.04.001

    Article  PubMed  Google Scholar 

  • Deane EE, Woo NYS (2004) Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). Am J Physiol Regul Integr Comp Physiol 287:55–65

    Article  CAS  Google Scholar 

  • Deng J, Shoemaker R, Xie B (2009) Targetef bisulphite sequencing reveals changes in DNA methylation associated with nuclear programming. Nat Biotechnol 27(4):353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diez-Tascon C, Keane OM, Wilson T et al (2005) Microarray analysis of selection lines from outbred populations to identify genes involved with nematode parasite resistance in sheep. Physiol Genomics 21:59–69

    Article  CAS  PubMed  Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475

    Article  PubMed  Google Scholar 

  • Edwards SV, Potts WK (1996) Polymorphism of Mhc genes: implications for conservation genetics of vertebrates. In: Smith TB, Wayne RK (eds) Molecular genetic approaches to conservation. Oxford University Press, Oxford, pp 214–237

    Google Scholar 

  • Eisen J (2007) Environmental shotgun sequencing: its potential and challenges for studying the hidden world of microbes. PLoS Biol 5:e82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellegren H, Smeds L, Burri R et al (2012) The genomic landscape of species divergence in Ficedula flycatchers. Nature 491(7426):756–760. doi:10.1038/nature11584

    CAS  PubMed  Google Scholar 

  • Excoffier L, Dupanloup I, Huerta-Sánchez E et al (2013) Robust demographic inference from genomic and SNP data. PLoS Genet. doi:10.1371/journal.pgen.1003905

    PubMed  PubMed Central  Google Scholar 

  • Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109

    CAS  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) An introduction to conservation genetics. CUP, Cambridge

    Book  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    Article  CAS  PubMed  Google Scholar 

  • Funk C, McKay J, Hohenlohe PA, Allendorf F (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Galimberti A, DeMattia F, Losa A et al (2013) DNA barcoding as a new tool for food traceability. Food Res Int 50:55–63

    Article  CAS  Google Scholar 

  • Gavan MK, Oliver MK, Douglas A, Piertney SB (2015) Gene dynamics of Toll-like receptor 4 through a population bottleneck in an insular population of water voles (Arvicola amphibius). Conserv Genet 16(5):1181–1193

    Article  CAS  Google Scholar 

  • Goldstein DB, Schlotterer C (1999) Microsatellites: evolution and application. OUP, Oxford

    Google Scholar 

  • Hajibabaei M, Singer G, Clare E, Hebert P (2007) Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring. BMC Biol 5:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayden E (2014) Technology: the $1000 genome. Nature 507:294–295

    Article  PubMed  CAS  Google Scholar 

  • Hebert P, Cywinska A, Ball S, DeWaard J (2003) Biological identifications through DNA barcodes. Proc R Soc London B 270:313–321

    Article  CAS  Google Scholar 

  • Herrera CM, Pozo MI, Bazaga P (2012) Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol Ecol Res 21:2602–2616

    Article  CAS  Google Scholar 

  • Hinten GN, Hale MC, Gratten J et al (2007) SNP-SCALE: SNP scoring by colour and length exclusion. Mol Ecol Notes 7:377–388

    Article  CAS  Google Scholar 

  • Hoban SM, Hauffe HC, Pérez-Espona S et al (2013) Bringing genetic diversity to the forefront of conservation policy and management. Conser Genet Resour 5:593–598

    Article  Google Scholar 

  • Hoglund J (2009) Evolutionary conservation genetics. OUP, Oxford

    Book  Google Scholar 

  • Hohenlohe P, Bassham S, Etter PD et al (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  • LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological computational and technological advances. Nucl Acids Res 37:4181–4193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamichhaney S, Berglund J, Almén MS et al (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375

    Article  CAS  PubMed  Google Scholar 

  • Li W (1978) Maintainance of genetic variability under the joint effects of mutation selection and random drift. Genetics 90:349–382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luikart G, England P, Tallmon D et al (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • Majerus MEN, Mundy NI (2003) Mammalian melanism: natural selection in black and white. Trends Genet 19:585–590

    Article  CAS  PubMed  Google Scholar 

  • Mamanova L (2010) Target-enrichment strategies for next generation sequncing. Nat Methods 7:111–118

    Article  CAS  PubMed  Google Scholar 

  • Manolio T, Collins F, Cox N (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin S, Davey J, Jiggins C (2014) Evaluating the use of ABBA-BABA statistics to locate introgrerssed loci. Mol Biol Evol 32:244–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-Padilla J, Redpath SM, Zeineddine M, Mougeot F (2014) Insights into population ecology from long-term studies of red grouse Lagopus lagopus scoticus. J Anim Ecol 83:85–98

    Google Scholar 

  • Massicotte R, Whitelaw E, Angers B (2011) DNA methylation: a source of random variation in natural populations. Epigenetics Off J DNA Methylation Soc 6:421–427

    Article  CAS  Google Scholar 

  • May B (1992) Starch gel electrophoresis of allozymes. In: Hoelzel AR (ed) Molecular genetics analysis of populations. OUP, Oxford, pp 1–27

    Google Scholar 

  • Mayr E (1988) The how and why of species. Biol Philos 3:431–441

    Article  Google Scholar 

  • Merila J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903

    Article  Google Scholar 

  • Metzker M (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Miller J, Poissant J, Hogg J, Coltman D (2012) Genomic consequences of genetic rescue in an insular population of bighorn sheep (Ovis canadensis). Mol Ecol 21:1583–1596

    Article  CAS  PubMed  Google Scholar 

  • Morán P, Pérez-Figueroa A (2011) Methylation changes associated with early maturation stages in the Atlantic salmon. BMC Genet 12:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morán P, Marco-Rius F, Megías M et al (2013) Environmental induced methylation changes associated with seawater adaptation in brown trout. Aquaculture 392:77–83

    Article  CAS  Google Scholar 

  • Morin PA, Luikart G, Wayne RK, group SNP workshop (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216

    Article  Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254

    Article  PubMed  Google Scholar 

  • Nachman MW, Hoekstra HE, D’Agostino SL (2003) The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci U S A 100:5268–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narum S, Hess J (2011) Comparison of FST outlier tests for SNP loci under selection. Mol Ecol Res 11:184–194

    Article  Google Scholar 

  • Niemiller ML, Fitzpatrick BM, Miller BT (2008) Recent divergence with gene flow in Tennessee cave salamanders (Plethodontidae: Gyrinophilus) inferred from gene genealogies. Mol Ecol 17:2258–2275. doi:10.1111/j.1365-294X.2008.03750.x

    Article  CAS  PubMed  Google Scholar 

  • Nolan D, Carpenter S, Barber J et al (2007) Rapid diagnostic PCR assays for members of the Culicoides obsoletus and Culicoides pulicaris species complexes, implicated vectors of bluetongur virus in Europe. Vet Microbiol 124:82–94

    Google Scholar 

  • Nosil P, Schluter D (2011) The genes underlying the process of speciation. Trends Ecol Evol 26:160–167. doi:10.1016/j.tree.2011.01.001

    Article  PubMed  Google Scholar 

  • Nunome T, Negoro S, Miyatake K et al (2006) A protocol for the construction of microsatellite enriched genomic library. Plant Mol Biol Re 24:305–312

    Article  CAS  Google Scholar 

  • Nunoura T, Takaki Y, Hirai M, et al (2015) Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci 201421816. doi:10.1073/pnas.1421816112

    Google Scholar 

  • Ogden R, Dawney N, McEwing R (2009) Wildlife DNA forensics – bridging the gap between conservation genetics and law enforcment. Endanger Species Res. doi:10.3354/esr00144

    Google Scholar 

  • Oleksyk TK, Smith MW, O’Brien SJ (2010) Genome-wide scans for footprints of natural selection. Philos Trans R Soc Lond B Biol Sci 365:185–205. doi:10.1098/rstb.2009.0219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver MK, Piertney SB (2012) Selection maintains MHC diversity through a natural population bottleneck. Mol Biol Evol. doi:10.1093/molbev/mss063

    PubMed  Google Scholar 

  • Oliver MK, Telfer S, Piertney SB (2009) Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris). Proc R Soc Lond B Biol Sci 276:1119–1128

    Article  CAS  Google Scholar 

  • Paun O, Bateman RM, Fay MF et al (2010) Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol Biol Evol 27:2465–2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pemberton JM, Slate J, Bancroft D, Barrett J (1995) Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol 4:249–252

    Article  CAS  PubMed  Google Scholar 

  • Peterson BK, Weber JN, Kay EH et al (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. doi:10.1371/journal.pone.0037135

    Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity (Edinb) 96:7–21

    CAS  Google Scholar 

  • Piertney S, Webster LMI (2010) Characterising functionally important and ecologically meaningful genetic diversity using a candidate gene approach. Genetica 138:419–432

    Article  CAS  PubMed  Google Scholar 

  • Piertney SB, Stewart WA, Lambin X et al (2005) Phylogeographic structure and postglacial evolutionary history of water voles (Arvicola terrestris) in the United Kingdom. Mol Ecol 14:1435–1444. doi:10.1111/j.1365-294X.2005.02496.x

    Article  CAS  PubMed  Google Scholar 

  • Piertney SB, Lambin X, Maccoll ADC et al (2008) Temporal changes in kin structure through a population cycle in a territorial bird, the red grouse Lagopus lagopus scoticus. Mol Ecol 17:2544–2551. doi:10.1111/j.1365-294X.2008.03778.x

    Article  CAS  PubMed  Google Scholar 

  • Powell J (1994) Molecular techniques in population genetics: a brief history. In: Streit B, Wagner G, DeSalle R, Schierwater B (eds) Molecular ecology and evolution: approaches and applications. Birkhauser, Basel, pp 131–156

    Chapter  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. doi:10.1111/j.1471-8286.2007.01758.x

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evol (N Y) 55:1095–1103

    CAS  Google Scholar 

  • Reyna-Lopez GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet MGG 253:703–710

    Article  CAS  PubMed  Google Scholar 

  • Richards CL, Schrey AW, Pigliucci M (2012) Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett 15:1016–1025

    Article  PubMed  Google Scholar 

  • Rockman MV (2012) The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66:1–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Saiki R, Scharf S, Faloona F et al (1985) Enzymatic amplification of B-Globin genomic sequences and restriction site analysis for diagnosis of sickle cell anaemia. Science 230:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Santure AW, De Cauwer I, Robinson MR et al (2013) Genomic dissection of variation in clutch size and egg mass in a wild great tit (Parus major) population. Mol Ecol 22:3949–3962. doi:10.1111/mec.12376

    Article  PubMed  Google Scholar 

  • Schulz B, Eckstein RL, Durka W (2013) Scoring and analysis of methylation-sensitive amplification polymorphisms for epigenetic population studies. Mol Ecol Res 13:642–653

    Article  CAS  Google Scholar 

  • Seehausen O, Butlin RK, Keller I et al (2014) Genomics and the origin of species. Nat Rev Genet 15:176–192. doi:10.1038/nrg3644

    Article  CAS  PubMed  Google Scholar 

  • Shafer AB, Wolf JBW, Alves PC et al (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87

    Article  PubMed  Google Scholar 

  • Shaw JL, Moss R (1989) Factors affecting the establishment of the cecal threadworm Trichostrongylus tenuis in red grouse (Lagopus lagopus scoticus). Parasitology 99:259–264

    Google Scholar 

  • Shokralla S, Spall J, Gibson J, Hajibabaei M (2012) Next generation sequencing technologies for environmental DNA reseach. Mol Ecol 21:1794–1805

    Article  CAS  PubMed  Google Scholar 

  • Shorey L, Piertney SB, Stone J, Hoglund J (2000) Fine-scale genetic structuring on Manacus manacus leks. Nature 408:352–353

    Google Scholar 

  • Skinner MK (2011) Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 6:838–842

    Article  CAS  PubMed  Google Scholar 

  • Smith G, Ritchie MG (2013) How might epigenetics contribute to ecological speciation? Curr Zool 59:686–696

    Article  Google Scholar 

  • Snell-Rood EC, Troth A, Moczek AP (2013) DNA methylation as a mechanism of nutritional plasticity: limited support from horned beetles. J Exp Zool Part B Mol Dev Evol 320:22–34

    Article  CAS  Google Scholar 

  • Stevenson TJ, Prendergast BJ (2013) Reversible DNA methylation regulates seasonal photoperiodic time measurement. Proc Natl Acad Sci U S A 110:16651–16656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  CAS  PubMed  Google Scholar 

  • Tewhey R, Nakano M, Wang X (2009) Enrichment of sequencing targets from the human genome by solution hybridisation. Genome Biol 10:R116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vergeer P, Wagemaker NC, Ouborg NJ (2012) Evidence for an epigenetic role in inbreeding depression. Bio Lett 8:798–801

    Article  Google Scholar 

  • Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster LMI, Mello LV, Mougeot F et al (2011a) Identification of genes responding to nematode infection in red grouse. Mol Ecol Res 11:305–313

    Article  CAS  Google Scholar 

  • Webster LMI, Paterson S, Mougeot F et al (2011b) Transcriptomic response of red grouse to gastro-intestinal nematode parasites and testosterone: implications for population dynamics. Mol Ecol Res 20:920–931

    Article  CAS  Google Scholar 

  • Wenzel MA, Piertney SB (2014) Fine-scale population epigenetic structure in relation to gastro-intestinal parasite load in red grouse (Lagopus lagopus scotica). Mol Ecol Res 23:4256–4273

    Article  CAS  Google Scholar 

  • Wenzel MA, Piertney SB (2015) Digging for gold nuggets: uncovering novel candidate genes for variation in gastrointestinal nematode burden in a wild bird species. J Evol Biol 28(4):807–825

    Article  CAS  PubMed  Google Scholar 

  • Wenzel MA, Webster LMI, Blanco G et al (2012) Pronounced genetic structure and low genetic diversity in European red-billed chough (Pyrrhocorax pyrrhocorax) populations. Conserv Genet 13:1213–1230. doi:10.1007/s10592-012-0366-6

    Article  Google Scholar 

  • Wenzel MA, James MC, Douglas A, Piertney SB (2015) Genome-wide association and genome partitioning reveal novel genomic regions underlying variation in gastrointestinal nematode burden in a wild bird. Molecular Ecology 24:4175–4192

    Google Scholar 

  • Wilson GR (1983) The prevalence of cecal threadworms (Trichostrongylus tenuis) in red grouse (Lagopus lagopus scoticus). Oecologia 58:265–268

    Article  Google Scholar 

  • Wu CI (2001) The genic view of the process of speciation. J Evol Biol 14:851–865. doi:10.1046/j.1420-9101.2001.00335.x

    Article  Google Scholar 

  • Xiang H, Li X, Dai F et al (2013) Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genomics 14:646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoccoz N (2012) The future of enviornmental DNA in ecology. Mol Ecol 21:1848–1863

    Article  CAS  Google Scholar 

  • Zalewski A, Piertney SB, Zalewska H, Lambin X (2009) Landscape barriers reduce gene flow in an invasive carnivore: geographical and local genetic structure of American mink in Scotland. Mol Ecol 18:1601–1615. doi:10.1111/j.1365-294X.2009.04131.x

    Article  PubMed  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Marius Wenzel, Carles Vilà, Heather Ritchie, Alex Douglas and Martha Gavan for comment, content and discussion. Support was provided through a Leverhulme Trust Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart B. Piertney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Piertney, S.B. (2016). High-Throughput DNA Sequencing and the Next Generation of Molecular Markers in Wildlife Research. In: Mateo, R., Arroyo, B., Garcia, J. (eds) Current Trends in Wildlife Research. Wildlife Research Monographs, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-27912-1_9

Download citation

Publish with us

Policies and ethics