Skip to main content

Abstract

Mood stabilizers have been used to primarily treat bipolar and schizoaffective disorders. However, these agents are also employed as adjunctive treatments for schizophrenia, depression, and other psychiatric illnesses. Lithium has been a mainstay of therapy for bipolar disorders for over 50 years. Lithium’s pharmacokinetic profile is well known as this agent is primarily excreted from the body by the kidney, which is about 20 % of the glomerular filtration rate. The antiepileptic agents evolved as mood stabilizers; however, the regulatory agencies have only approved the following agents – carbamazepine, valproic acid, and lamotrigine. Other antiepileptics have been used “off-label.” Carbamazepine undergoes autoinduction for the first month of therapy and is a well-known hepatic CYP enzyme inducer. Valproic acid metabolism mainly takes place via glucuronide conjugation by the UGT and mitochondrial β-oxidation. CYP metabolism accounts for 10 % of valproic acid metabolism primarily by CYP2C9. Lamotrigine is also largely metabolized by glucuronidation to three main metabolites. A small amount of autoinduction of 17 % was found to occur with lamotrigine serum concentrations that were determined to be clinically insignificant. Therapeutic plasma or serum concentrations have been established for lithium, carbamazepine, and valproic acid, while a threshold of 3.0 μg/mL for lamotrigine was recommended. Incidence of lamotrigine toxicity significantly increased with >15 μg/mL. Mood stabilizers have complex pharmacodynamic profiles that involve various receptors, ion channels, and secondary messenger systems. Lithium adverse events due to intoxication are linked to toxic plasma concentrations and decreased renal function. Carbamazepine plasma concentrations >14 μg/mL are associated with a variety of adverse effects with symptom severity increasing with rising drug concentrations that include coma and death. Valproic acid has a wider therapeutic range, and hyperammonemic encephalopathy correlations with serum concentrations are poor. Lamotrigine skin rashes are associated with large initial doses, rapid dose escalation, and concurrent valproic acid usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodwin GM, Mahli GS (2007) What is a mood stabilizer? Psychol Med 35:609–614

    Article  Google Scholar 

  2. Bowden CL (2008) Bipolar pathophysiology and development of improved treatments. Brain Res 1235:92–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bialer M (2012) Why are antiepileptic drugs used for nonepileptic conditions? Epilepsia 53(Suppl 7):26–33

    Article  CAS  PubMed  Google Scholar 

  4. Malhi GS, Adams D, Cahill CM, Dodd S, Berk M (2009) The management of individuals with bipolar disorder: a review of the evidence and its integration into clinical practice. Drugs 69:2063–2101

    Article  CAS  PubMed  Google Scholar 

  5. Mahli GS, Tanious M, Das P, Berk M (2012) The science and practice of lithium therapy. Aust N Z J Psychiatry 46:192–211

    Article  Google Scholar 

  6. Cipriani A, Hawton K, Stockton S, Geddes JR (2013) Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis. BMJ 346:f3646

    Article  PubMed  Google Scholar 

  7. Bettinger TL, Crismon ML (2006) Lithium. In: Burton ME, Shaw LM, Schentag JJ, Evans WE (eds) Applied pharmacokinetics & pharmacodynamics, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 798–812

    Google Scholar 

  8. Amidsen A (1977) Serum level monitoring and clinical pharmacokinetics of lithium. Clin Pharmacokinet 2:73–92

    Article  Google Scholar 

  9. Cooper TB, Simpson GM, Lee JH, Bergner PE (1978) Evaluation of a slow-release lithium carbonate formulation. Am J Psychiatry 135:917–922

    Article  CAS  PubMed  Google Scholar 

  10. Thornhill DP (1978) Pharmacokinetics of ordinary and sustained release lithium carbonate in manic patients after acute dosage. Eur J Clin Pharmacol 14:267–271

    Article  CAS  PubMed  Google Scholar 

  11. Ward ME, Musa MN, Bailey L (1994) Clinical pharmacokinetics of lithium. J Clin Pharmacol 34:280–285

    Article  CAS  PubMed  Google Scholar 

  12. Grandjean EM, Aubry JM (2009) Lithium: updated human knowledge using a evidence-based approach. Part II: clinical pharmacology and therapeutic monitoring. CNS Drugs 23:331–349

    Article  CAS  PubMed  Google Scholar 

  13. Soares JC, Boada F, Keshavan MS (2000) Brain lithium measurements with 7Li magnetic resonance spectroscopy (MRS): a literature review. Eur Neuropsychopharmacol 10:151–158

    Article  CAS  PubMed  Google Scholar 

  14. Camus M, Henneré G, Baron G, Peytavin G, Massias L, Mentré F, Farinotti R (2003) Comparison of lithium concentrations in red blood cells and plasma in samples collected for TDM, acute toxicity, or acute-on-chronic toxicity. Eur J Clin Pharmacol 59:583–587

    Article  CAS  PubMed  Google Scholar 

  15. El Balkhi S, Megarbane B, Poupon J, Baud FJ, Galliot-Guilley M (2009) Lithium poisoning: is determination of the red blood cell lithium concentration useful? Clin Toxicol 47:8–13

    Article  CAS  Google Scholar 

  16. Finley PR, Warner MD, Peabody CA (1995) Clinical relevance of drug interactions with lithium. Clin Pharmacokinet 29:172–191

    Article  CAS  PubMed  Google Scholar 

  17. Dunner DL (2003) Drug interactions of lithium and other antimanic/mood-stabilizing medications. J Clin Psychiatry 64(Suppl 5):38–43

    CAS  PubMed  Google Scholar 

  18. Sproule BA, Hardy BG, Shulman KI (2000) Differential pharmacokinetics of lithium in elderly patients. Drugs Aging 16:165–177

    Article  CAS  PubMed  Google Scholar 

  19. Schou M (1990) Lithium treatment during pregnancy, delivery, and lactation: an update. J Clin Psychiatry 51:410–413

    CAS  PubMed  Google Scholar 

  20. Malhi GS, Tanious M, Das P, Coulston CM, Berk M (2013) Potential mechanisms of action of lithium in bipolar disorder: current understanding. CNS Drugs 27:135–153

    Article  PubMed  Google Scholar 

  21. Oruch R, Elderbi MA, Khattab HA, Pryme IF, Lund A (2014) Lithium: a review of pharmacology, clinical uses, and toxicity. Eur J Pharmacol 740:464–473

    Article  CAS  PubMed  Google Scholar 

  22. Machado-Vieira R, Manji HK, Zarate CA Jr (2009) The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord 11(Suppl 2):92–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rao JS, Rapoport SI (2009) Mood-stabilizers target the brain arachidonic acid cascade. Curr Mol Pharmacol 2:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sproule B (2002) Lithium in bipolar disorder: can drug concentrations predict therapeutic effect? Clin Pharmacokinet 41:639–660

    Article  PubMed  Google Scholar 

  25. Stokes PE, Kocsis JH, Arcuni OJ (1976) Relationship of lithium chloride dose to treatment response in acute mania. Arch Gen Psychiatry 33:1080–1084

    Article  CAS  PubMed  Google Scholar 

  26. Prien RF, Caffey EM, Klett CJ (1972) Comparison of lithium carbonate and chlorpromazine in the treatment of mania. Arch Gen Psychiatry 26:146–153

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi R, Sakuma A, Itoh K, Itoh H, Kurihara M (1975) Comparison of efficacy of lithium carbonate and chlorpromazine in mania: report of collaborative study group on treatment of mania in Japan. Arch Gen Psychiatry 32:1310–1318

    Article  CAS  PubMed  Google Scholar 

  28. Hopkins HS, Gelenberg AJ (2000) Serum lithium levels and the outcome of maintenance therapy of bipolar disorder. Bipolar Disord 2(3 Pt 1):174–179

    Article  CAS  PubMed  Google Scholar 

  29. Chen ST, Altshuler LL, Melnyk KA, Erhart SM, Miller E, Mintz J (1999) Efficacy of lithium vs. valproate in the treatment of mania in the elderly: a retrospective study. J Clin Psychiatry 60:181–186

    Article  CAS  PubMed  Google Scholar 

  30. Severus WE, Grunze H, Kleindienst N, Frangou S, Moeller HJ (2005) Is the prophylactic antidepressant efficacy of lithium in bipolar I disorder dependent on study design and lithium level? J Clin Psychopharmacol 25:457–462

    Article  CAS  PubMed  Google Scholar 

  31. Gelenberg AJ, Kane JM, Keller MB, Lavori P, Rosenbaum JF, Cole K, Lavelle J (1989) Comparison of standard and low serum levels of lithium for maintenance treatment of bipolar disorder. N Engl J Med 321:1489–1493

    Article  CAS  PubMed  Google Scholar 

  32. Severus WE, Kleindienst N, Seemuller F, Frangou S, Möller HJ, Greil W (2008) What is the optimal serum lithium level in the long-term treatment of bipolar disorder: a review? Bipolar Disord 10:231–237

    Article  CAS  PubMed  Google Scholar 

  33. Kleindienst N, Severus WE, Greil W (2007) Are serum lithium levels related to the polarity of recurrence in bipolar disorders? Evidence from a multi-center trial. Int Clin Psychopharmacol 22:125–131

    Article  PubMed  Google Scholar 

  34. Kleindienst N, Severus WE, Moller HJ, Greil W (2005) Is polarity of recurrence related to serum lithium level in patients with bipolar disease? Eur Arch Psychiatr Clin Neurosci 255:72–74

    Article  CAS  Google Scholar 

  35. Severus WE, Kleindienst N, Evoniuk G, Bowden C, Möller HJ, Bohus M, Frangou S, Greil W, Calabrese JR (2009) Is the polarity of relapse/recurrence in bipolar-I disorder patients related to serum lithium levels? Results from an empirical study. J Affect Disord 115:466–470

    Article  CAS  PubMed  Google Scholar 

  36. Kato T, Inubushi T, Takahashi S (1994) Relationship of lithium concentrations in the brain measured by lithium-7 magnetic resonance spectroscopy to treatment response in mania. J Clin Psychopharmacol 14:330–335

    Article  CAS  PubMed  Google Scholar 

  37. Sachs GS, Renshaw PF, Lafer B, Stoll AL, Guimarães AR, Rosenbaum JF, Gonzalez RG (1995) Variability of brain lithium levels during maintenance treatment: a magnetic resonance spectroscopy study. Biol Psychiatry 38:422–428

    Article  CAS  PubMed  Google Scholar 

  38. Chen KP, Shen WW, Lu ML (2004) Implication of serum concentration monitoring in patients with lithium intoxication. Psychiatry Clin Neurosci 58:25–29

    Article  CAS  PubMed  Google Scholar 

  39. Gadallah MF, Feinstein EI, Massry SG (1988) Lithium intoxication: clinical course and therapeutic considerations. Miner Electrolyte Metab 14:146–149

    CAS  PubMed  Google Scholar 

  40. Simard M, Gumbiner B, Lee A, Lewis H, Norman D (1989) Lithium carbonate intoxication: a case report and review of the literature. Arch Intern Med 149:36–46

    Article  CAS  PubMed  Google Scholar 

  41. Oakley PW, Whyte IM, Carter GL (2001) Lithium toxicity: an iatrogenic problem in susceptible individuals. Aust N Z J Psychiatry 35:833–840

    Article  CAS  PubMed  Google Scholar 

  42. Malhi GS, Tanious M (2011) Optimal frequency of lithium administration in the treatment of bipolar disorder clinical and dosing considerations. CNS Drugs 25:289–298

    Article  CAS  PubMed  Google Scholar 

  43. Ljubicic D, Letica-Crepulja M, Vitezic D, Bistrovic IL, Ljubicic R (2008) Lithium treatments: single and multiple daily dosing. Can J Psychiatry 53:323–331

    PubMed  Google Scholar 

  44. Jensen HV, Davidsen K, Toftegaard L, Mellerup ET, Plenge P, Aggernaes H, Bjorum N (1996) Double-blind comparison of the side-effect profiles of daily versus alternate day dosing schedules in lithium maintenance treatment of manic-depressive disorder. J Affect Disord 36:89–93

    Article  CAS  PubMed  Google Scholar 

  45. Plenge P, Amin M, Agarwal AK, Greil W, Kim MJ, Panteleyeva G, Park JM, Prilipko L, Rayushkin V, Sharma M, Mellerup E (1999) Prophylactic efficacy of lithium administered every second day: a WHO multicentre study. Bipolar Disord 1:109–116

    Article  CAS  PubMed  Google Scholar 

  46. Mahli GS, Berk M (2012) Is the safety of lithium no longer in the balance? Lancet 379:690–692

    Article  Google Scholar 

  47. Johannessen Landmark C (2008) Antiepileptic drugs in non-epilepsy disorders: relations between mechanisms of action and clinical efficacy. CNS Drugs 22:27–47

    Article  PubMed  Google Scholar 

  48. Post RM, Ketter TA, Uhde T, Ballenger JC (2007) Thirty years of clinical experience with carbamazepine in the treatment of bipolar illness: principles and practice. CNS Drugs 21:47–71

    Article  CAS  PubMed  Google Scholar 

  49. Weisler RH, Cutler AJ, Ballenger JC, Post RM, Ketter TA (2006) The use of antiepileptic drugs in bipolar disorders: a review based on evidence from controlled trials. CNS Spectr 11:788–799

    PubMed  Google Scholar 

  50. Haddad PM, Das A, Ashfaq M, Wieck A (2009) A review of valproate in psychiatric practice. Exp Opin Drug Metab Toxicol 5:539–551

    Article  CAS  Google Scholar 

  51. Weisler RH, Calabrese JR, Bowden CL, Ascher JA, De Veaugh-Geiss J, Evoniuk G (2008) Discovery and development of lamotrigine for bipolar disorder: a story of serendipity, clinical observations, risk taking, and persistence. J Affect Dis 108:1–9

    Article  CAS  PubMed  Google Scholar 

  52. Bowden CL, Singh V (2012) Lamotrigine (Lamictal IR) for the treatment of bipolar disorder. Exp Opin Pharmacother 13:2565–2571

    Article  CAS  Google Scholar 

  53. Grunze H (2010) Anticonvulsants in bipolar disorder. J Ment Health 19:127–141

    Article  PubMed  Google Scholar 

  54. Spina E (2002) Carbamazepine: chemistry, biotransformation, and pharmacokinetics. In: Levy RH, Mattson RH, Meldrum BS, Perucca E (eds) Antiepileptic drugs, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 236–246

    Google Scholar 

  55. Sillanpaa M, Haataja L, Tomson T, Johannesen S (2009) Carbamazepine. In: Shorvon S, Perucca E, Engel J (eds) Treatment of epilepsy, 3rd edn. Wiley-Blackwell Publishing Ltd, Oxford, pp 459–474

    Chapter  Google Scholar 

  56. Luna-Tortos C, Fedrowitz M, Löscher W (2008) Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology 55:1364–1375

    Article  CAS  PubMed  Google Scholar 

  57. Zhang C, Kwan P, Zuo Z, Baum L (2012) The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev 64:930–942

    Article  CAS  PubMed  Google Scholar 

  58. Anderson GD (1998) A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother 32:554–563

    Article  CAS  PubMed  Google Scholar 

  59. Perucca E (2005) Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol 61:246–255

    Article  PubMed Central  CAS  Google Scholar 

  60. Levy RH, Shen DD, Abbott FS, Riggs W, Hachad H (2002) Valproic acid: chemistry, biotransformation, and pharmacokinetics. In: Levy RH, Mattson RH, Meldrum BS, Perucca E (eds) Antiepileptic drugs, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 780–800

    Google Scholar 

  61. Perucca E (2002) Pharmacological ad therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs 16:695–714

    Article  CAS  PubMed  Google Scholar 

  62. Bourgeois BFD (2009) Valproate. In: Shorvon S, Perucca E, Engel J (eds) Treatment of Epilepsy, 3rd edn. Wiley-Blackwell Publishing Ltd, Oxford, pp 685–698

    Chapter  Google Scholar 

  63. Dickins M, Chen C (2002) Lamotrigine: chemistry, biotransformation, and pharmacokinetics. In: Levy RH, Mattson RH, Meldrum BS, Perucca E, Levy RH, Mattson RH, Meldrum BS, Perucca E (eds) Antiepileptic drugs, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 370–379

    Google Scholar 

  64. Goldsmith DR, Wagstaff AJ, Ibbotson T, Perry CM (2003) Lamotrigine: a review of its use in bipolar disorder. Drugs 63:2029–2050

    Article  CAS  PubMed  Google Scholar 

  65. Biton V (2006) Pharmacokinetics, toxicology and safety of lamotrigine in epilepsy. Exp Opin Drug Metab Toxicol 2:1009–1018

    Article  CAS  Google Scholar 

  66. Matsuo F, Riaz A (2009) Lamotrigine. In: Shorvon S, Perucca E, Engel J (eds) Treatment of epilepsy, 3rd edn. Wiley-Blackwell Publishing Ltd, Oxford, pp 535–558

    Chapter  Google Scholar 

  67. Hussein Z, Posner J (1997) Population pharmacokinetics of lamotrigine monotherapy in patients with epilepsy: retrospective analysis of routine monitoring data. Br J Clin Pharmacol 43:457–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen C, Casale EJ, Duncan B, Culverhouse EH, Gilman J (1999) Pharmacokinetics of lamotrigine in children in the absence of other antiepileptic drugs. Pharmacotherapy 19:437–441

    Article  PubMed  Google Scholar 

  69. Ohman I, Vitols S, Tomson T (2000) Lamotrigine in pregnancy: pharmacokinetics during the delivery, in the neonate, and during lactation. Epilepsia 41:709–713

    Article  CAS  PubMed  Google Scholar 

  70. Stahl SM (2013) Mood stabilizers. In: Stahl SM (ed) Stahl’s essential psychopharmacology, 4th edn. Cambridge University Press, New York, pp 370–387

    Google Scholar 

  71. Rogawski MA, Loscher W (2004) The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med 10:685–692

    Article  CAS  PubMed  Google Scholar 

  72. Schloesser RJ, Martinowich K, Manji HK (2012) Mood-stabilizing drugs: mechanism of action. Trends Neurosci 35:36–46

    Article  CAS  PubMed  Google Scholar 

  73. Patsalos PN, Berry DJ, Bourgeois BFD, Cloyd JC, Glauser TA, Johannessen SI, Leppik IE, Tomson T, Perucca E (2008) Antiepileptic drugs – best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia 49:1239–1276

    Article  CAS  PubMed  Google Scholar 

  74. Okuma T, Yamashita I, Takahashi R, Itoh H, Otsuki S, Watanabe S, Sarai K, Hazama H, Inanaga K (1990) Comparison of the antimanic efficacy of carbamazepine and lithium carbonate by double-blind controlled study. Pharmacopsychiatry 23:143–150

    Article  CAS  PubMed  Google Scholar 

  75. Ballenger JC, Post RM (1980) Carbamazepine in manic depressive illness: a new treatment. Am J Psychiatry 137:782–790

    Article  CAS  PubMed  Google Scholar 

  76. Okuma T, Inanaga K, Otsuki S, Sarai K, Takahashi R, Hazama H, Mori A, Watanabe M (1979) Comparison of the antimanic efficacy of carbamazepine and chlorpromazine: a double-blind controlled study. Psychopharmacology (Berl) 66:211–217

    Article  CAS  Google Scholar 

  77. Vasudev K, Goswami U, Kohli K (2000) Carbamazepine and valproate monotherapy: feasibility, relative safety and efficacy, and therapeutic drug monitoring in manic disorder. Psychopharmacology (Berl) 150:15–23

    Article  CAS  Google Scholar 

  78. Post RM, Uhde TW, Ballenger JC, Chatterji DC, Greene RF, Bunney WE Jr (1983) Carbamazepine and its -10,11-epoxide metabolite in plasma and CSF. Relationship to antidepressant response. Arch Gen Psychiatry 40:673–676

    Article  CAS  PubMed  Google Scholar 

  79. Post RM, Uhde TW, Wolff EA (1984) Profile of clinical efficacy and side effect of carbamazepine in psychiatric illness: relationship to blood and CSF levels of carbamazepine and its -10,11-epoxide metabolite. Acta Psychiatr Scand 313(Suppl):104–120

    Article  CAS  Google Scholar 

  80. Petit P, Lonjon R, Cociglio M (1991) Carbamazepine and its 10,11-epoxide metabolite in acute mania: clinical and pharmacokinetic correlates. Eur J Clin Pharmacol 41:541–546

    Article  CAS  PubMed  Google Scholar 

  81. Chbili C, Bannour S, Khlifi S, Ben Hadj Ali B, Saguem S (2014) Relationships between pharmacokinetic parameters of carbamazepine and therapeutic response in patients with bipolar disease. Ann Biol Clin 72:453–459

    Google Scholar 

  82. Hojer J, Malmlund HO, Berg A (1993) Clinical features of 28 consecutive cases of laboratory confirmed massive poisoning with carbamazepine alone. J Toxicol Clin Toxicol 31:449–458

    Article  CAS  PubMed  Google Scholar 

  83. Weaver DF, Camfield P, Fraser A (1988) Massive carbamazepine overdose: clinical and pharmacological observations in five episodes. Neurology 38:755–759

    Article  CAS  PubMed  Google Scholar 

  84. Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, Wu JY, Chen YT (2004) Medical genetics: a marker for Stevens-Johnson syndrome. Nature 428:486

    Article  CAS  PubMed  Google Scholar 

  85. Fleming J, Chetty M (2006) Therapeutic drug monitoring of valproate in psychiatry. how far we progressed? Clin Neuropharmacol 29:350–359

    Article  CAS  PubMed  Google Scholar 

  86. Haymond J, Ensom MHH (2010) Does valproic acid warrant therapeutic drug monitoring in bipolar affective disorder? Ther Drug Monit 32:19–29

    Article  CAS  PubMed  Google Scholar 

  87. Bowden CL, Janicak PG, Orsulak P, Swann AC, Davis JM, Calabrese JR, Goodnick P, Small JG, Rush AJ, Kimmel SE, Risch SC, Morris DD (1996) Relation of serum valproate concentration to response in mania. Am J Psychiatry 153:765–770

    Article  CAS  PubMed  Google Scholar 

  88. Allen MH, Hirschfeld RM, Wozniak PJ, Baker JD, Bowden CL (2006) Linear relationship of valproate serum concentration to response and optimal serum levels for acute mania. Am J Psychiatry 163:272–275

    Article  PubMed  Google Scholar 

  89. Bowden CL, Calabrese JR, McElroy SL, Gyulai L, Wassef A, Petty F, Pope HG Jr, Chou JC, Keck PE Jr, Rhodes LJ, Swann AC, Hirschfeld RM, Wozniak PJ (2000) A randomized, placebo-controlled 12-month trial of divalproex and lithium in treatment of outpatients with bipolar I disorder. Arch Gen Psychiatry 57:481–489

    Article  CAS  PubMed  Google Scholar 

  90. Haidukewych D, John G, Zielinski JJ, Rodin EA (1985) Chronic valproic acid therapy and incidence of increases in venous plasma ammonia. Ther Drug Monit 7:290–294

    Article  CAS  PubMed  Google Scholar 

  91. Ratnaike RN, Schapel GJ, Purdie G, Rischbieth RH, Hoffmann S (1986) Hyperammonaemia and hepatotoxicity during chronic valproate therapy: enhancement by combination with other antiepileptic drugs. Br J Clin Pharmacol 22:100–103

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kugoh T, Yamamoto M, Hosokawa K (1986) Blood ammonia level during valproic acid therapy. Jpn J Psychiatry Neurol 40:663–668

    CAS  PubMed  Google Scholar 

  93. Dealberto MJ (2007) Valproate-induced hyperammonaemic encephalopathy: review of 14 cases in the psychiatric setting. Int Clin Psychopharmacol 22:330–337

    Article  PubMed  Google Scholar 

  94. Chapman SA, Wacksman GP, Patterson BD (2001) Pancreatitis associated with valproic acid: a review of the literature. Pharmacotherapy 21:1550–1560

    Article  Google Scholar 

  95. Werlin SL, Fish DL (2006) The spectrum of valproic acid-associated pancreatitis. Pediatrics 118:1660–1663

    Article  PubMed  Google Scholar 

  96. Bartoli A, Guerrini R, Belmonte A, Alessandri MG, Gatti G, Perucca E (1997) The influence of dosage, age, and comedication on steady state plasma lamotrigine concentrations in epileptic children: a prospective study with preliminary assessment of correlations with clinical response. Ther Drug Monit 19:252–260

    Article  CAS  PubMed  Google Scholar 

  97. Johannessen SI, Tomson T (2006) Pharmacokinetic variability of newer antiepileptic drugs: when is monitoring needed? Clin Pharmacokinet 45:1061–1075

    Article  CAS  PubMed  Google Scholar 

  98. Kilpatrick ES, Forrest G, Brodie MJ (1996) Concentration-effect and concentration-toxicity relationships with lamotrigine: a prospective study. Epilepsia 37:534–538

    Article  CAS  PubMed  Google Scholar 

  99. Morris RG, Black AB, Harris AL, Batty AB, Sallustio BC (1998) Lamotrigine and therapeutic drug monitoring: retrospective survey following the introduction of a routine service. Br J Clin Pharmacol 46:547–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kagawa S, Mihara K, Nakamura A, Nemoto K, Suzuki T, Nagai G, Kondo T (2014) Relationship between plasma concentrations of lamotrigine and its early therapeutic effect of lamotrigine augmentation therapy in treatment-resistant depressive disorder. Ther Drug Monit 36:730–733

    Article  CAS  PubMed  Google Scholar 

  101. Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K, Fric M, Gerlach M, Greiner C, Gründer G, Haen E, Havemann-Reinecke U, Jaquenoud Sirot E, Kirchherr H, Laux G, Lutz UC, Messer T, Müller MJ, Pfuhlmann B, Rambeck B, Riederer P, Schoppek B, Stingl J, Uhr M, Ulrich S, Waschgler R, Zernig G (2011) AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 44:195–235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Spina MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spina, E., Italiano, D. (2016). Mood Stabilizers. In: Jann, M., Penzak, S., Cohen, L. (eds) Applied Clinical Pharmacokinetics and Pharmacodynamics of Psychopharmacological Agents. Adis, Cham. https://doi.org/10.1007/978-3-319-27883-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27883-4_8

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-27881-0

  • Online ISBN: 978-3-319-27883-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics